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Abstract

With the increasing demand for efficient maritime logistic management, industries are striving to develop automation 
software. However, collecting data for analytics from diverse sources like shipping routes, weather conditions, historical 
incidents, and cargo specifications has become a challenging task in the distribution environment. This challenge gives 
rise to the possibility of faulty products and traditional testing techniques fall short of achieving optimal performance. 
To address this issue, we propose a novel decentralised software system based on Transfer Learning and blockchain 
technology named as BETL (Blockchain -Enabled Transfer Learning). Our proposed system aims to automatically 
detect and prevent vulnerabilities in maritime operational data by harnessing the power of transfer learning and 
smart contract-driven blockchain. The vulnerability detection process is automated and does not rely on manually 
written rules. We introduce a non-vulnerability score range map for the effective classification of operational factors. 
Additionally, to ensure efficient storage over the blockchain, we integrate an InterPlanetary File System (IPFS). To 
demonstrate the effectiveness of transfer learning and blockchain integration for secure logistic management, we conduct 
a testbed-based experiment. The results show that this approach can achieve high precision (98.00%), detection rate 
(98.98%), accuracy (97.90%), and F-score (98.98), which highlights its benefits in enhancing the safety and reliability 
of maritime logistics processes. Additionally, the computational time of BETL (the proposed approach) was improved 
by 18.9% compared to standard transfer learning.
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INTRODUCTION

In recent years, maritime-related issues have been paid much 
attention since maritime has been known to play an important 
role in developing the economy [1]–[4]. However, maritime 
activities, including shipping and port activities, have a large 
number of disadvantages, such as high pollutant emissions 
(including ship and port activities), low operational efficiency, 
high-cost logistical activities, high fuel consumption, maritime 
safety… etc. [5]–[11]. Containerisation has played a crucial role in 

accelerating global trade and establishing extensive global supply 
chains, contributing significantly to economic globalisation in the 
20th century [12][13]. However, progress in container shipping 
has not kept up with the rapid advancements in international 
trade and supply chains [14][15]. Businesses now demand more 
timely and transparent deliveries with enhanced traceability, 
which traditional container shipping struggles to meet [16]
[17]. The movement of containers involves complex bilateral 
interactions among various entities in the logistics ecosystem, 
resulting in delays, inefficiencies, and susceptibility to fraud 
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[18][19]. Paper-based processes and numerous permissions 
and transactions further contribute to inefficiencies towards 
hard evidence of its effectiveness [20]. As a result, there is 
a need for innovative solutions to address these vulnerabilities 
in maritime logistics [21]. To tackle these challenges, this 
manuscript introduces a groundbreaking solution: Blockchain-
Enabled Transfer Learning. By leveraging the transparency and 
immutability of blockchain and the analytical capabilities of AI, 
the proposed system aims to detect and mitigate vulnerabilities 
in real time, enhancing the security and reliability of the logistics 
ecosystem [22][23]. The integration of blockchain and Transfer 
Learning introduces a decentralised architecture with smart 
contracts, automating trust and collaboration among multiple 
stakeholders in the logistics chain [24]. A comprehensive testbed-
based experiment validates the efficacy of the solution, fortifying 
the logistics industry against vulnerabilities and disruptions, while 
improving global maritime trade security and efficiency [25][26].

In traditional maritime logistics, the seamless coordination 
among diverse entities relies on efficient communication 
and monitoring within a shared workspace [27]. As cargo is 
transported by ship from one port to another, several pieces of 
documentation must also be moved and verified by multiple 
parties such as bill of lading, packing lists, certificates of origin, 
commercial invoices, and export licenses [28]. In addition, 
a vessel’s crew, who are not necessarily nationals of the flag 
state, needs to manage, verify, and validate seafaring crew 
certificates in compliance with global regulations such as the 
IMO’s International Convention on Standards of Training, 
Certification and Watchkeeping for Seafarers (STCW) and 
the Convention on Safety of Life at Sea (SOLAS) [29][30]. 
However, in a remote working environment, ensuring seamless 
synchronisation becomes more challenging, leading to potential 
code errors, oversights, and mistakes [31]. Blockchain adoption 
in the maritime supply chain for containerised international 
trade faces several barriers [32][33]. These barriers include a lack 
of support from influential stakeholders and a lack of government 
regulations [34]. The key stakeholders in this adoption process 
are container lines, ports, beneficial cargo owners, freight 
forwarders/third-party logistics, and customs authorities [35]
[34]. Additionally, there are non-technical barriers such as 
resistance to change and a lack of awareness and understanding 
that should not be underestimated [36]. To successfully 
implement blockchain in the shipping industry, certain design 
principles should be considered, including immutability, 
decentralisation, security, privacy, compatibility, scalability, 
inclusiveness, and territoriality [37][38]. The implementation 
phase can be influenced by different approaches, which can 
affect the likelihood of adoption by industry stakeholders [39]. 
Actually, intelligent methods such as machine learning and 
artificial intelligence, which could be successfully applied to 
many fields such as waste and energy management, optimization, 
planning, prediction, and error detection aiming to generate 
a powerful collaboration [40]–[44], could have the potential to 
revolutionise the maritime sector through improved efficiency, 
safety, and environmental sustainability [45]–[47].

Secure supply chain management methods (to protect blockchain 
from attack) can be achieved through the implementation of 
blockchain technology. Blockchain provides decentralised and 

immutable data storage, enabling trust and transparency in 
supply chain networks [48][49]. By using blockchain, a digital log 
of all propagating information can be maintained, allowing for 
the validation of official updates and the rejection of potentially 
malicious payloads [50][51]. Additionally, the use of attribute-
based access control models, in combination with blockchain, can 
enable decentralised, fine-grained, and dynamic access control 
management in supply chain systems, ensuring data privacy 
and network scalability [52]. The integration of blockchain with 
supply chain management also helps minimise the interference of 
middleman attacks and allows the discarding of forged products, 
thereby maintaining integrity and authentication throughout the 
supply chain. To summarise the state-of-the-art literature, the 
problem scenarios are listed below.

Over-centralisation: Consider S as the comprehensive 
set encompassing all entities actively engaged in maritime 
logistics, C is the set of all communication channels between 
the entities in S, and R is the set of all associated risks. The 
problem of centralised maritime logistics is the minimisation 
of the following expression:

f (S, C, R) = Σ (r * p(r))          (1)

where p(r) is the probability of risk r occurring.
Data Security in remote workplace: Let G be the probability 

of a collaborative effort being successful, D is the distance 
between the collaborating entities and H is the disparity in 
hardware and software accessibility between remote and 
in-office workers. Then, the problem of the probability of 
a collaborative effort can be modelled as follows:

P = f (D, H)              (2)

where f is a function that maps the distance and disparity to 
the probability of collaboration, and D and H are continuous 
variables that represent the distance between the collaborating 
entities and the disparity in software accessibility, respectively. 
The statistical analysis for the estimating function f has the 
inferences that G decreases as D increases and as H increases. 

Data sharing dilemma: Maritime supply chain stakeholders 
are concerned with sharing key business information, such 
as customer, supplier, and freight data. This is because many 
forwarders and intermediaries benefit from information 
asymmetry, which could impede widespread adoption. If we 
let T be the time it takes to complete a task, then it can be 
modelled as follows:

T = g(H)                (3)

where g is a function that maps the disparity to the time taken 
to complete a task. The problem is that T is directly proportional 
to H.

Related works

The use of electronic bills of ladings has been shown to enhance 
the efficiency of shipping operations, ship finance, and marine 



POLISH MARITIME RESEARCH, No 1/2024 137

insurance. In contrast, Papathanasiou et al. [52] proposed that 
the shipping industry could derive advantages from blockchain 
technology in areas such as document exchanges, optimising 
container utilisation, intelligent transportation, and precise container 
weighing. Hamidi et al. [53] and Zhong et al. [54] suggested that 
the adoption and effective use of blockchain by container lines 
could contribute to reducing price competition between them. 
Furthermore, Hasan et al. [55] demonstrated a smart-contract 
solution involving smart containers equipped with Internet 
of Things (IoT) sensors to efficiently manage shipments. They 
showcased how blockchain enables real-time tracking of items 
like vaccines, including monitoring temperature, humidity, and air 
pressure. In their conceptual study, Lambourdiere and Corbin [56] 
proposed that blockchain can have a positive impact on information 
exchange, supply chain coordination, visibility, and performance 
within maritime supply chains.

Taking a sustainability perspective, Jovi´c et al. [57] conducted 
a literature review and categorised the benefits of blockchain in 
maritime supply chains into economic, social, and environmental 
advantages. Meanwhile, Li et al. [58] explored pilot applications 
in maritime supply chains and identified significant benefits 
from blockchain, including expediting processes, reducing 
costs related to documentation, ensuring secure records for 
food safety, enabling real-time tracking, facilitating efficient 
coordination across various modes of transport, and improving 
compliance with shipment regulations and marine insurance 
requirements. Lastly, Munim et al. [59] conducted a review 
of blockchain literature in a maritime context, revealing 17 
potential uses of blockchain technology. The state-of-the-art 
studies focused on the risk analysis of blockchain-integrated 
systems (BISs) in container shipping. However, it failed to 
capture the full range of risks and uncertainties associated 
with other aspects of maritime logistics services [60][61]. The 
study does not provide a comprehensive analysis of the potential 
mitigation strategies or recommendations for managing the 

identified risks in container shipping BISs. In general, the cause 
and effect of malicious software is presented in Fig. 1.

Fig. 1. Cause and effect of malicious software

BLOCKCHAIN-ENABLED TRANSFER 
LEARNING (BETL): Generic 

architecture
The proposed architecture ensures efficient and accurate 

vulnerability detection, security, scalability, trust, transparency, 
and reliability in a multiparty maritime logistics ecosystem [62]
[63]. The overall system is divided into two parts: a transfer learning 
(TL) model that predicts software vulnerabilities, and a blockchain-
based system that ensures security, trust, and transparency [64]
[65]. InterPlanetary File System (IPFS) is integrated to improve the 
scalability and efficiency of data storage. The TL model is trained 
on a large dataset of software vulnerabilities to learn the patterns of 
vulnerabilities. The model can then be used to predict vulnerabilities 
in new software. The blockchain-based system uses a distributed 
ledger to store vulnerability information. This ensures that the 
information is secure, transparent, and tamper resistant. An IPFS 
peer-to-peer file storage system is used for scalable and efficient 
storage. The BETL architecture assumes a multiparty ecosystem, 
as shown in Fig. 2. The distinctive roles of various stakeholders 
include the following.

Fig. 2. BETL system architecture
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There is also the possibility of human error in the reviewing 
process. In  uch a scenario, transfer learning can greatly help 
reduce this risk-oriented human intervention in the testing 
process of vulnerabilities. In the proposed system, a transfer 
learning model is trained on a dataset of 20,724 source code 
files from the six most common languages (C, C++, Python, 
Java, Ruby, and C#). The dataset is categorised into vulnerable 
and non-vulnerable codes, based on vulnerability thresholds. 
The National Institute of Standards and Technology (NIST) 
categorises the level of severity as low, medium, or high. In 
this work, we propose a non-vulnerability score range mapping 
with a reverse threshold manner to that of the NIST standard. 
This is mainly for the following reasons:

• �The transfer learning model performs learning for a non-
vulnerability score, i.e. the prediction score tells us how 
well the source code is written.

• �Software Development LifeCycle (SDLC) is concerned with 
ensuring error-free code at the production level. Having 
a non-vulnerability score, rather than a vulnerability score, 
for mapping the category range is more intuitive for the 
lead developerto make better decisions.

We mapped the non-vulnerability score range with the 
category of secureness of source code files, as shown in Table 2. 
This mapping can be customised, according to the requirements 
and policies of the organisation, and is controlled by the 
blockchain validator nodes. Once source codes are uploaded, 
the smart contract invokes the transfer learning model to check 
for vulnerability. The model predicts the non-vulnerability score 
for the source code and the score is mapped to the secureness 
category. The lead developer can then take appropriate action, 
based on the secureness category of the source code. This transfer 
learning-based vulnerability detection system can help to improve 
the efficiency and accuracy of vulnerability detection in maritime 
logistics. It can also help to reduce the risk of human error in the 
reviewing process. Table 2 summarises the differences between 
AI-based and transfer learning-based vulnerability detection.

Tab. 1. AI-based learning versus transfer learning

Feature AI-based learning Transfer learning

Model 
training
F: Z→Rd

Z Rd,
d → #

vulnerabilities

where  Z is the ith 
vulnerability  

and ​is its label.  
AI requires n to be high

Let Zs​ and Zt​ be the source 
and target domains, 
respectively. Let fs​ be  

a pre-trained model on 
source domain Zs​.  

TL leverage fs​ to reduce 
training time

Accuracy
where I(x)  

is an indicator function

ft​ is a model learned  
on Zt​ by leveraging 
knowledge from fs​.  

ft​(zt​) is the prediction  
of the model for the 

vulnerability zt​​

Scalability

T = a×Db  
where T is the training 
time, D is the dataset 
size with a and b as 

constants

T = a×Sb + c×Td  
where T is the fine-tuning 
time with S and T as the 
source and target dataset 

size involving the constants 
a, b, c, and d

Cost-
effectiveness

Can be expensive to 
develop and deploy

Can be more cost-
effective than AI-based 
vulnerability detection

Technology Solution Provider (TSP): The TSP is an 
authenticated entity in the logistics ecosystem with a unique 
identifier. It is responsible for writing code, following 
the requirements of the assigned module. The choice of 
programming languages depends on the requirements and 
varies widely based on the application. The TSP is provided 
with login credentials to access the code submission platform 
and has the privilege of performing unit testing. It is assumed 
that the TSP submits its code over a secure network in a remote 
scenario.

Consortium Network: We opted for a consortium blockchain 
as it balances the security of a private blockchain and the 
flexibility of a public blockchain. The network is formed and 
operated by a group of trusted entities, regulatory authorities, 
industry associations, security experts, and quality managers. 
This ensures that the blockchain is highly secure and resistant to 
attack. Validator nodes are responsible for reaching a consensus 
on the order of transactions and ensuring that no unauthorised 
changes are made to the blockchain. They do this by using 
a voting mechanism to approve new blocks of transactions. 
Lightweight nodes can participate in the network by reading the 
blockchain and querying information. However, they cannot 
participate in the consensus process.

InterPlanetary File System: An IPFS private network provides 
secure and decentralised storage and access to data about the 
supply chain. This can help to improve the efficiency of learning 
models by reducing the need to transfer data between different 
systems.

Architectural design

The BETL architecture consists of three main components: 
a vulnerability scanner, a blockchain-based decentralised 
infrastructure, and a private IPFS network shared by the 
validators. There are four major entities including technology 
solution providers, validator nodes, lightweight nodes, and IPFS 
storage architecture. Data and information exchanged among 
entities are stored on the blockchain as immutable transactions. 
A smart contract deployed on the blockchain governs the 
interactions and automates various functionalities. The core 
functionalities of the proposed architecture are twofold:

• �Transfer Learning-based source code vulnerability 
scanning: This component uses artificial intelligence to 
identify vulnerabilities in the source code.

• �Blockchain-based decentralisation for vulnerability 
prevention: This component uses the blockchain to 
store information about vulnerabilities and to prevent 
vulnerabilities from being exploited.

Transfer learning-based  
vulnerability scanning

During the outsourcing of the development process, 
developers may purposefully or inadvertently make certain 
mistakes that could result in a  vulnerable application. 
Traditional vulnerability detection in software testing 
requires human intervention, making it time-consuming. 
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Blockchain-based decentralisation for 
vulnerability prevention

The blockchain-based decentralised system for prevention 
consists of a smart contract that acts as the core logic unit of the 
system [66][67]. The smart contract is used to automate certain 
tasks on the blockchain, such as testing code for vulnerabilities 
and storing the results of the testing securely. When a developer 
uploads code for testing, the smart contract invokes a transfer 
learning to test the code for vulnerabilities. The neural network 
is trained on a dataset of known vulnerabilities, so that it can 
identify vulnerabilities in new code [68][69]. If the model 
detects vulnerability in the code, the smart contract stores the 
vulnerability information in the blockchain. The smart contract 
also stores the results of the testing, which indicates whether 
the code is vulnerable or not. If the code passes the test, the 
smart contract stores the results of the testing in the blockchain 
and stores the source code file in IPFS. IPFS is a distributed file 
storage system that makes it difficult to modify or delete files.

The access control mechanism of the smart contract ensures 
that only authorised users can access the data stored in the 
blockchain. This helps to protect the confidentiality and integrity 
of the data. The blockchain-based decentralised system for 
prevention provides several benefits, including:

Automated testing: The smart contract can automate the 
process of testing code for vulnerabilities. This can help to save 
time and improve the efficiency of the testing process.

Secure storage: The blockchain is a secure and tamper-proof 
distributed ledger. This helps to ensure that the data stored 
in the blockchain is protected from unauthorised access and 
modification.

Traceability: The blockchain provides a tamper-proof record 
of all changes to the data stored in the blockchain. This helps to 
ensure that the data is always accurate and reliable.

Pseudo-transparency: The blockchain is a pseudo-transparent 
ledger that is accessible to everyone. This helps to ensure that 
the testing process is transparent and accountable.

IPFS storage for analytics

The IPFS ‘DHT’ is a Distributed Hash Table used to store 
the hashes of all the files that are stored in the Kademlia overlay 
network. N is the set of nodes in the IPFS DHT network [70]. 
Each node n N maintains a routing table Tn that stores the 
location of other nodes in the network. The routing table is 
a hash table that maps the hashes of the nodes to the addresses 
of the nodes. To search for a file, a node n sends a query q to 
the DHT. The query is a hash of the file that is being searched 
for. The query is routed to the nodes that store the hash of the 
file. The routing table is a distributed hash table, so the query is 
routed to the nodes that are most likely to store the hash of the 
file. When a file is stored in the DHT, it is split into blocks and 
distributed to multiple nodes. The blocks of a file are replicated 
using a hash function to multiple nodes to ensure availability. 
The hash function is used to generate a unique identifier for 
each block. The blocks are then replicated to nodes that have 
the same hash identifier. The fault tolerance of the IPFS DHT 

network is achieved through replication. The internal working 
of IPFS can be represented by the following functions:

Fig. 3. IPFS-DHT network parameters

Content Publishing:
1. �The blockchain validator imports the content into its 

local IPFS private network and assigns it a unique content 
identifier (CID).

2. �The IPFS instance performs a DHT traversal to locate the 
closest peers to the CID by XORing the distance of the 
Peer ID from the SHA256 hash of the CID.

3. �The IPFS instance stores the peer record with the closest 
peers.

Content Retrieval:
1. �The requester performs opportunistic Bitswap requests 

to already connected peers for the CID.
2. �If the requester does not find the content, the DHT 

performs a multi-round iterative lookup to resolve a CID 
to a peer’s Multi-addresses as a traversal, to find a provider 
record storing the peer.

3. �The requester connects to the peer and fetches the content 
that maps CID using Bitswap.

Fig. 4. Content publication and retrieval in IPFS
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Experimental setup

We conducted experiments on a testbed that integrated 
transfer learning, blockchain, smart contracts, and private IPFS. 
The testbed consisted of 8 nodes, which simulated 2 blockchain 
validators, 4 lightweight nodes, and 2 technological solution 
providers with the specified system configuration.

Transfer learning environment: A gated recurrent units 
(GRU) model was used to extract features from the source 
code to learn long-term dependencies, which is important 
for source code analysis. We selected the Robustly Optimised 
BERT Approach (RoBERTa) model with AdamW optimiser, 
to classify the features extracted by the GRU model and for 
pre-training, to detect code vulnerabilities. The base model 
was instantiated using ResNet architectures to extract features 
from the ISO image and learn deep features. We also employed 
convolutional neural networks (CNN) to classify the features 
extracted by the ResNet model and identify vulnerabilities in 
the ISO image. It was important to freeze the layers from the 
pre-trained model because we did not want the weights in those 
layers to be re-initialised. We performed experiments on three 
sets of datasets containing vulnerable and non-vulnerable C and 
C++ functions. The first three datasets (LibPNG, PidGIN, and 
VLC) were collected from publicly available resources. They 
contained a total of 118 vulnerable and 15,318 non-vulnerable 
source code files. To address the class imbalance problem, 
the researchers also included 5,200 vulnerable sample C/C++ 
files from the Draper Vulnerability Detection in Source Code 
(VDISC) dataset. The collected files were split into a 9:5:5 ratio 
to get the training, validation, and test sets. The resulting dataset 
consisted of 9817, 5453, and 5453 source files for the training, 
validation, and test sets, respectively.

Tab. 2. Technology stack

Software / 
Hardware Version

Platform/OS Ubuntu 18.04.6 LTS

Processor Intel Core i7-9700K, frequency 3.6 GHz, maximum 
turbo frequency 4.90 GHz, 8 CPU cores, 8 threads

System 
architecture 64-bit operating system and processor

Memory (RAM) 16 GB

Framework Ganache, Truffle, Plasma, Pre-trained model: 
RoBERTa,

Ganache 2.5.4
Lightweight Ethereum blockchain network

Node.js
16.15.0

JavaScript runtime environment for building 
blockchain network

Truffle
5.5.16

Framework for writing and deploying smart 
contracts

Web3.js
1.7.3

JavaScript library for interacting with the 
Ethereum blockchain

IPFS 0.13.0
Distributed peer-to-peer file system for storing data

IPFS HTTP 
Client

53.0.1
JavaScript library for interacting with IPFS

Smart contract Solidity v0.8.21

Blockchain-based decentralised environment: An Ethereum 
client was locally instantiated by deploying ganache-cli and 
with JSON RPC live at port 8545. Ganache enabled the upload 
of smart contracts onto Ethereum and launched custom-built 
DApp. The Truffle framework hosted the DApps with a nested 
chain structure that had contract codes, migrations, and truffle.
js. Web3.js facilitated interaction between smart contracts and 
the blockchain [71]. The Metamask extension was used for 
browser support. The plasma contract was designed to track and 
archive only final on-chain proofs, to counteract multiple exits 
at an indistinguishable range. The contract maintained a list of 
exitable maps that were updated on the issue of each on-chain 
proof and the transaction hosted at Ethereum [72]. A plasma 
contract called main_chain was deployed to the Ethereum core. 
MainChain.sol had functions to generate Merkle proof of the 
issued transactions, validate the signature from the physical 
nodes, and handle submitted blocks. The child_chain console 
managed transactions and blocks that were posted when an 
event was triggered in the main_chain. The child chain contract 
hosted an RPC server on an 8546 port, that smoothed client 
interfacing. A Python-based wrapper was scripted for client 
applications, to wrap with child_chain RPC API.

Results and discussion

The development environment was set up in accordance 
with the technical details listed in Table 2. We evaluated the 
performance of RoBERT on GRU architecture using different 
epochs and model sizes. The experiments were conducted on 
a training set of 9817 source code files and a validation set of 
5453 source code files. The model sizes were 8, 32, 64, 128, 
256, and 512. The model performance was evaluated on a test 
set of 5453 source code files. We observed that the accuracy of 
the models increased linearly with the number of epochs. The 
accuracy results on the training, validation, and test sets with 
RoBERTa, for an epoch of 10 and 30, are shown in Fig. 5 and 
Fig. 6, respectively. GRU with RoBERTa with a model size of 512 
achieved a test accuracy of 98% and 97% for an epoch of 10 and 
30, respectively. The training accuracy increased with the model 
size, as larger models can make more complex adjustments to 
fit the training data. However, this can lead to overfitting, where 
the model becomes too attuned to the training data and does 
not generalise new data well. Our findings suggest that the 
optimal model size for avoiding overfitting is 280. This is the 
size where the validation accuracy, which measures the model’s 
ability to generalise new data, is highest. The testing accuracy, 
which measures the model’s performance on unseen data, is 
highest at a model size of 515. This suggests that a model size 
of 515 strikes a good balance between fitting the training data 
and generalising it to new data. Model sizes of 10 and 80 show 
signs of overfitting, as the training accuracy is much higher than 
the validation accuracy. This is because these models are too 
complex and have memorised the training data too well. Model 
sizes 415 and 515 show signs of underfitting, as the training 
accuracy is much lower than the validation accuracy. This is 
because these models are not complex enough to capture the 
inherent complexity of the data.
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Fig. 5. Accuracy for RoBERTa with 10 epochs on different model sizes

Fig. 6. Accuracy for RoBERTa with 30 epochs on different model sizes

Table 3 shows the performance of the proposed BETL 
method on two vulnerability datasets: LibPNG and PidGIN. The 
performance metrics are precision, detection rate, accuracy, and 
F-score. The results show that BETL on LibPNG has a slightly 
higher precision and accuracy than on PidGIN. However, 
the proposed method on PidGIN has a higher detection rate, 
while BETL on LibPNG is better at avoiding false positives. 
The computation time of BETL on LibPNG is slightly higher 
than PidGIN on BETL.

Tab.3. Performance Analysis of Vulnerability Datasets  
for Proposed BETL method

Measures LibPNG PidGIN

Precision 98.99 97.97

Detection Rate 98.98 97.68

Accuracy 97.98 97.12

F-score 98.98 99.02

Computation Time (s) 51.89 49.64

The training loss is the loss that is calculated on the training 
data, while the validation loss is the loss that is calculated on the 
validation data. The validation loss is a more accurate measure 
of the model’s performance on unseen data. The results show 

that the training loss decreases as the model size increases. This 
is because larger models are able to learn more complex patterns 
in the data. However, the validation loss does not decrease at 
the same rate. This suggests that the models are overfitting 
the training data. The best model size is the one that has the 
lowest validation loss. In this case, the best model size is 415. 
This model has a validation loss of 0.0125, as shown in Fig. 7, 
which is the lowest of all the models. The training loss is always 
lower than the validation loss. This is because the training loss 
is calculated on the data that the model has already seen, while 
the validation loss is calculated on the data that the model 
has not seen before. The training loss decreases more rapidly 
than the validation loss, as the model size increases. This is 
because larger models are able to learn more complex patterns 
in the data, but they are also more likely to overfit the training 
data. The validation loss eventually plateaus as the model size 
increases. This suggests that there is a limit to the amount of 
improvement that can be achieved by simply increasing the 
model size.

Fig. 7. Loss in RoBERTa pre-training on different model sizes

The training loss decreases as the number of epochs increases 
for all CNN architectures. This is because the model is able to 
learn the features of the data better as it is trained for more 
epochs. The validation accuracy increases as the number of 
epochs increases for all CNN architectures. This is because the 
model is able to generalise unseen data better as it is trained for 
more epochs. ResNet-50 has the lowest training loss and highest 
validation accuracy for all numbers of epochs. This is because 
ResNet-50 has more layers and parameters than the other CNN 
architectures, which allows it to learn more complex features of 
the data. The difference in training loss and validation accuracy 
decreases as the number of epochs increases. This is because 
the model becomes more confident in its predictions as it is 
trained for more epochs. ResNet-18 has the lowest number of 
parameters, followed by ResNet-34, ResNet-50, ResNet-101, and 
ResNet-152. This is because ResNet-18 has the fewest layers. 
The training time increases as the number of epochs and the 
number of parameters increases, as depicted in Fig. 8. This is 
because the model must do more computations to train for 
more epochs and with more parameters. It is inferred that the 
ResNet-50 architecture is the best choice since we are dealing 
with only limited ISO images that require high accuracy.
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Fig. 8. Model training speed on different epochs

Conclusion

We propose a novel BETL system for optimising maritime 
logistics by harnessing the transparency and immutability of 
blockchain and the analytical capabilities of transfer learning. 
We developed a non-vulnerability score range map for the 
effective classification of operational factors. To ensure efficient 
storage over the blockchain, we seamlessly integrated IPFS with 
the blockchain and conducted a testbed-based experiment 
to demonstrate the effectiveness of BETL for secure logistic 
management. The results of the experiment show that BETL 
can achieve high precision (98%), detection rate (98.98%), 
accuracy (97.9%), and F-score (98.98). This highlights the 
benefits of BETL in enhancing the safety and reliability of 
maritime logistics processes. Additionally, the computational 
time of BETL was improved by 18.9%, compared to standard 
transfer learning. Beyond its present application, BETL has the 
potential to extend its utility to other areas of maritime logistics, 
such as port operations and cargo management. Furthermore, 
we envision enhancing the usability by incorporating a user-
friendly graphical interface for a seamless experience.
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