Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | Vol. 68, no. 2 | 577--596
Tytuł artykułu

Moon’s subsurface heat fow mapping

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the lunar subsurface heat fow using data from the recent Chinese lunar orbiting spacecrafts Chang’e 1 and 2 to explore variations in the subsurface temperature of the Moon. These variations include heat fow information of the subsurface and the interior of the Moon. This research aims to develop a radiative transfer forward model for an airless body and then utilize microwave radiometer (MRM) data to study an observed anomaly of elevated 2-m-deep TB measurements in the Oceanus Procellarum region on the lunar subsurface. After initial comparison of the data from MRM with that from instruments and modelling of the lunar regolith parameters, a multi-layer radiative transfer forward model has been derived using the fuctuation dissipation theorem. The forward model was then used to invert the MRM-measured TB data to generate temperature profles of 2-m-deep subsurface. The provisional results show that, as expected, the temperature of 2-m subsurface is potentially correlated with the distribution of radioactive elements such as uranium and thorium in the lunar crust. The temperature map of 2-m subsurface was then converted to a lunar heat fow map, which was validated by the Apollo 15 and 17 measurements. Inspecting this heat fow map, abnormal high heat fow in the Oceanus Procellarum KREEP Terrain (PKT) region was noticed. The PKT is enriched with a high abundance of radioactive elements such as uranium and thorium. Hence, a heat fow model based on radioactive elements as well as internal cooling was built to investigate such a fnding.
Wydawca

Czasopismo
Rocznik
Strony
577--596
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Mathematics and Physics, Shaoxing University, Shaoxing, China, east25220@126.com
  • Department of AOP Physics, University of Oxford, Oxford, UK
autor
  • Zhejiang Gongshang University, No. 149, J Road, Hangzhou 310000, China
autor
  • Department of the Environmental and Resource Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310000, China
Bibliografia
  • 1. Andrews-Hanna JC, Besserer J, Head JW III et al (2014) Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature 514(7520):68–71
  • 2. Braden SE, Stopar JD, Robinson MS et al (2014) Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat Geosci 7(11):787
  • 3. Burke WJ, Schmugge T, Paris JF (1979) Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations. J Geophys Res 84:287–294
  • 4. Campbell IH (2005) Large igneous provinces and the mantle plume hypothesis. Elements 1(5):265–269
  • 5. Cartier WDIII, Mitchell JK, Mahmood A (1973) The nature of lunar soil. NASA STI/Recon Tech Rep A 99:813–832
  • 6. Fa WZ, Jin YQ (2007) Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. J Geophys Res 112:E05003
  • 7. Hagermann A, Tanaka S (2006) Ejecta deposit thickness, heat flow, and a critical ambiguity on the Moon. Geophys Res Lett 33(19):277–305
  • 8. Hagerty J, Lawrence D, Hawke B, Gaddis L (2009) Thorium abundances on the Aristarchus plateau: insights into the composition of the Aristarchus pyroclastic glass deposits. J Geophy Res. https://doi.org/10.1029/2008JE003262
  • 9. Hartmann WK, Phillips RJ, Taylor GJ (1986) Origin of the Moon. Lunar & Planetary Institute, Houston, p 1
  • 10. Haskin LA (1998) The Imbrium impact event and the thorium distribution at the lunar highlands surface. J Geophys Res 103:1679–1689
  • 11. Heiken GH, Vaniman DT, French BM (1991) Lunar source book: a user’s guide to the Moon. Cambridge University Press, Cambridge
  • 12. Horai K, Fujii N (1972) Thermophysical properties of lunar material returned by Apollo missions. Moon 4(3):447–475
  • 13. Jin YQ (1993) Electromagnetic scattering modelling for quantitative remote sensing. World Scientific Publishing, Singapore
  • 14. Jones WP, Watkins JR, Calvert TA (1975) Temperatures and thermophysical properties of the lunar outmost layer. Moon 13:475–494
  • 15. Keihm SJ (1984) Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping. Icarus 60(3):568–589
  • 16. Keihm SJ, Peters K, Langseth MG (1973) Apollo 15 measurement of lunar surface brightness temperatures thermal conductivity of the upper 1 and 1/2 metres of regolith. Earth Planet Sci Lett 19:337–351
  • 17. Korokhin VV, Kaydash VG, Shkuratov YG, Stankevich DG, Urs M (2008) Prognosis of TiO2 abundance in lunar soil using a non-linear analysis of Clementine and LSCC data. Planet Space Sci 56:1063–1078
  • 18. Korotev RL (1998) Concentrations of radioactive elements in lunar materials. J Geophys Res Planets 103(E1):1691–1701
  • 19. Krotikov VD, Troitski UIVS (1964) Radio emission and nature of the Moon. Phys Usp 6(6):841–871
  • 20. Langseth MG Jr, Keihm SJ, Chute JL Jr (1972) Heat-flow experiment. Moon 4:390–410
  • 21. Langseth MG, Keihm SJ, Peters K (1976) Revised lunar heat flow values. Lunar Planet Sci Conf Proc 7:3143–3317
  • 22. Lawrence DJ, Feldman WC, Elphic RC et al (2002) Iron abundances on the lunar surface as measured by the lunar prospector gamma-ray and neutron spectrometers. J Geophys Res 107:5130
  • 23. Li Y, Wang ZZ, Jiang JS (2010) Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature. Sci China Earth Sci 53(9):1379–1391
  • 24. Little RC, Feldman WC, Maurice S et al (2003) Latitude variation of the subsurface lunar temperature: lunar Prospector thermal neutrons. J Geophys Res Planets 108(E5):5046
  • 25. Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the Moon. Science 268(5214):1150–1153
  • 26. Lucey PG, Blewett DT, Hawke BR (1998) Mapping the FeO and TiO2 content of the lunar surface multispectral imagery. J Geophys Res 103:3679–3699
  • 27. Mitchell DL, Pater ID (1994) Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm. Icarus 110:2–32
  • 28. Olhoeft GR, Strangway DW (1975) Dielectric properties of the first 100 metres of the Moon. Earth Planet Sci Lett 24:394–404
  • 29. Paige DA, Foote MC, Greenhagen BT et al (2010) The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Sci Rev 150(1–4):125–160
  • 30. Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific, Singapore
  • 31. Shkuratov YG, Kaydash VG, Opanasenko NV (1999) Iron and titanium abundance and maturity degree distribution on lunar nearside. Icarus 137(2):222–234
  • 32. Shrestha D (2007) An emission model for lunar regolith surfaces based on matrix doubling method. Electrical Engineering, pp 1–85
  • 33. Spencer JR, Lebofskyf LA, Sykes MV (1989) Systematic biases in radiometric diameter determinations. Icarus 78(2):337–354
  • 34. Spohn T, Breuer D (2002) Surface heat flow, radiogenic heating, and the evolution of the Moon. In: EGS General Assembly Conference Abstracts, p 27
  • 35. Spudis PD, Schultz PH (1985) The proposed lunar procellarum basin: some geochemical inconsistencies. In: Lunar and planetary science conference, vol 16, pp 809–810
  • 36. The Kam LAND Collaboration (2011) Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nat Geosci 4:647–651
  • 37. Tsang L, Njoku E, Kong JA (1975) Microwave thermal emission from a stratified medium with non uniform temperature distribution. J Appl Phys 46(12):5127–5133
  • 38. Ulaby FT, Moore RK, Fung AK (1981) Microwave remote sensing: active and passive. Volume 1-microwave remote sensing fundamentals and radiometry. Taylor & Francis, Routledge
  • 39. Urquhart ML, Jacksky BM (1997) Lunar thermal emission and remote determination of surface properties. J Geophys Res 102:10959–10969
  • 40. Vasavada AR, Paige DA, Wood SE (1999) Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141:179–193
  • 41. Wang ZZ, Li Y, Jiang JS, et al (2008) Microwave transfer models and brightness temperature simulations of MWS for remote sensing lunar surface on CE-1 Satellite. In: 2008 International conference on microwave and millimeter wave technology, pp 21–24
  • 42. Wang ZZ, Li Y, Zhang XH et al (2010) Calibration and brightness temperature algorithm of CE-1 lunar microwave sounder (CELMS). Sci China Earth Sci 53:1392–1406
  • 43. Warren PH, Rasmussen KL (1987) Megaregolith insulation, internal temperatures, and bulk uranium content of the Moon. J Geophys Res Solid Earth 92(B5):3453–3465
  • 44. Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP Terrane”: implications for mare volcanism and lunar evolution. J Geophys Res 105(E8):20417–20430
  • 45. Yamashita N et al (2010) Uranium on the Moon: global distribution and U/Th ratio. Geophys Res Lett 37:L10201
  • 46. Zhang WJ (2014) Estimate of lunar TiO2 and FeO with M cube data. Encyclopedia of lunar science. Springer, Cham
  • 47. Zhang WJ, Zhang XJ, Li F (2008) Backscattering from multilayer soil and its application to deep soil moisture estimation. J Electr Inf Technol 30(9):2107–2110
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b598482-c181-4c34-976d-d7c65122255a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.