Czasopismo
2013
|
Vol. 46, nr 1
|
123--135
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, some results on the equi-boundedness of solutions, the stability of the zero and the existence of positive periodic solutions of nonlinear difference equation with variable delay (…) are obtained.
Czasopismo
Rocznik
Tom
Strony
123--135
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Quy Nhon University, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam, dinhconghuong@qnu.edu.vn
autor
- Hanoi University of Science, 334 Nguyen Trai, Ha Noi, Vietnam, maunv@hus.edu.vn
Bibliografia
- [1] D. V. Giang, D. C. Huong, Extinction, persistence and global stability in models of population growth, J. Math. Anal. Appl. 308 (2005), 195–207.
- [2] D. V. Giang, D. C. Huong, Nontrivial periodicity in discrete delay models of population growth, J. Math. Anal. Appl. 305 (2005), 291–295.
- [3] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, (1964).
- [4] R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods, and Applications, Marcel Dekker, Inc (2000).
- [5] I. Győri, G. Ladas, P. H. Vlahos, Global attraction in a delay difference equation, Nonlinear Anal. 17 (1991), 473–479.
- [6] G. Karakostas, Ch. G. Philos, Y. G. Sficas, The dynamics of some discrete population models, Nonlinear Anal. 17 (1991), 1069–1084.
- [7] J. G. Milton, J. Belair, Chaos, noise and extinction in models of population growth, Theoret. Population Biol. 17 (1990), 273–290.
- [8] A. F. Ivanov, On global stability in a nonlinear discrete model, Nonlinear Anal. 23 (1994), 1383–1389.
- [9] D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35 (1978), 260–267.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b479282-e7a1-43f4-8b8f-e111b6ab45bd