Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 21, nr 3 | 569--589
Tytuł artykułu

Model of a long payload suspended on two cooperating winches and its preliminary experimental verification

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic model of a long payload motion in vertical plane containing the payload axis, suspended on two ropes on two co-operating winches is presented in the paper. The method of mathematical description of the model and its solving method are presented. The model is preliminary verified by comparison between simulation and experimental tests of payload oscillations done for immovable position of ropes suspension points. The results of verification and other simulation tests are presented as well.
Wydawca

Rocznik
Strony
569--589
Opis fizyczny
Bibliogr. 20 poz., 1 fot. kolor., rys., wykr.
Twórcy
autor
  • Lodz University of Technology, Department of Vehicles and Fundamentals of Machine Design, jacek.cink@p.lodz.pl
autor
Bibliografia
  • [1] Alesia, J.: Handling Long Steel Products Proves to Be a Balancing Act, Iron & Steel Technology - Safety First, 38-39, 2011.
  • [2] Chen He, Fang Yongchun and Sun Ning: A Novel Optimal Trajectory Planning Method for Overhead Cranes with Analytical Expressions. Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 2014.
  • [3] Cink, J. and Kosucki, A.:The selected methods of driving mechanisms shaping in order to minimize payload sway, Problems of Working Machines Development, Kosucki A., Monographs of Lodz University of Technology, Lodz, 51-64, 2015.
  • [4] Jolevski, D. and Bego O.: Model predictive control of gantry/bridge crane with anti-sway algorithm. Journal of Mechanical Science and Technology, 29, 2, 827-834, 2015.
  • [5] Ho-Hoon Lee : A New Motion-Planning Scheme for Overhead Cranes With High-Speed Hoisting, Journal of Dynamic Systems, Measurement, and Control JUNE, 126, 359-364, 2004.
  • [6] Kosucki, A.: Badanie transportu ładunków przy wykorzystaniu skojarzonych ruchów mechanizmów suwnic pomostowych (Loads transport research using associated movements of overhead cranes mechanisms). Rozprawy Naukowe. Politechnika Łódzka, 74; Zeszyty Naukowe. Politechnika Łódzka no. 1175, WP L, Łódź, 2013.
  • [7] Le Anh Tuan, Hoang Manh Cuong and Soon-Geul Lee: Second-order Sliding Mode Control of 3D Overhead Cranes. International Journal of Precision Engineering and Manufacturing, 15, 5, 811-819, 2014.
  • [8] Lifu Wang, Xiangdong Wang and Zhi Kong: Anti-swing Control of Overhead Cranes, Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 8024-8028, 2006.
  • [9] Maneeratanaporn Jadesada and Murakami Toshiyuki: Anti-sway Sliding-mode with Trolley Disturbance Observer for Overhead Crane system, The 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, Conference Publications, 1-6, 2012.
  • [10] Rigoberto Toxqui, Wen Yu and Xiaoou Li: Anti-swing control for overhead crane with neural compensation, International Joint Conference on Neural Networks, Vancouver, BC, Canada, 4697-4703, 2006.
  • [11] Rogers, L. K.: Overhead handling equipment basics, Modern Materials Handling, 12, 30-34, 2011.
  • [12] Smoczek, J. and Szpytko, J.: Iterative and Evolutionary Optimization for Interval Analysis-based Designing a Fuzzy Controller for a Planar Crane Model. 19th International Conference On Methods and Models in Automation and Robotics, MMAR, 258-263, 2014.
  • [13] Vazquez, C. and Collado, J.: Oscillation attenuation in an overhead crane: Comparison of some approaches, 6th International Conference on Electrical Engineering, Computing Science and Automatic Control,CCE, Conference Publications, 1-6, 2009.
  • [14] Wahyudi, Jamaludin Jalani, Riza Muhida and Momoh Jimoh Emiyoka Salami: Control Strategy for Automatic Gantry Crane Systems: A Practical and Intelligent Approach, International Journal of Advanced Robotic Systems, 4, 4, 447-456, 2007.
  • [15] Wu Xianqing, He Xiongxiong and Sun Ning: An Analytical Trajectory Planning Method for Underactuated Overhead Cranes with Constraints. Proceedings of the 33rd Chinese Control Conference, July 28-30, Nanjing, China, 2014.
  • [16] Xuebo Zhang, Yongchun Fang and Ning Sun: Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints. IEEE Transactions On Industrial Electronics, Vol. 61, No. 12, December 2014.
  • [17] Yang Jung Hua and Yang Kuang Shine: Adaptive coupling control for overhead crane systems, Mechatronics, 17, 143-152, 2007.
  • [18] Yang, J. H. and Yang, K. S.: Adaptive Control for 3-D Overhead Crane Systems, Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16, 1832-1837, 2006.
  • [19] Yang, J. H.: On the Adaptive Tracking Control of 3-D Overhead Crane Systems, Adaptive Control, 277-306, 2009.
  • [20] Zhengyan Zhang, Dingfang Chen and Min Feng: Dynamics Model and Dynamic Simulation of Overhead Crane Load Swing Systems Based on the ADAMS, Computer-Aided Industrial Design and Conceptual Design, CAID/CD 2008, 9th International, Conference Publications, 484-487, 2008.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5b0cc997-ac9d-46c0-9ef0-1a4c46bfe6f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.