Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, no. 3 | 475--493
Tytuł artykułu

Automated real-time absolute positioning technology on intelligent fully mechanised coal faces using the gyro RTS system

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The absolute positions of shearers on advancing coal faces are requisite for providing references for adaptive mining combined with geological models. Common coalmine localization techniques (e.g. UWB, INS, etc.) are not fully applicable to adaptive mining due to their drifting error or the messy environment. The gyro robotic total station (RTS) is versatile and precise in measuring coordinates in coal mines, while its conventional usage is of low automation and poor timeliness, impeding its application on mining faces. This article proposed an automated gyro RTS system for real-time absolute positioning on fully mechanised coal faces. The measuring process was changed to fit mining requirements, and a new state-transferring model was used to automate it. Programs were developed and installed in available instruments, forming a prototype. Field experiments were carried out on a simulative working face, verifying the system’s accuracy and applicability. Results show that the relative positioning error is better than 2.6143×10-4, which meets the demand of advancing faces. The error of the gyro is estimated at 55.5187”, justifying its nominal indicators. To sum up, the automated gyro RTS system proposed in this paper can offer real-time and accurate absolute positions of equipment on working faces, supporting adaptive mining combined with the geological model.
Wydawca

Rocznik
Strony
475--493
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Peking University, Institute of Remote Sensing and Geographic Informat ion System, Beijing 100871, China
autor
  • Peking University, Institute of Remote Sensing and Geographic Informat ion System, Beijing 100871, China, sjmao_@pku.edu.cn
  • Peking University, Institute of Remote Sensing and Geographic Informat ion System, Beijing 100871, China
autor
  • Beijing Longruan Technologies Co., Ltd., Beijing 100871, China
  • Beijing Longruan Technologies Co., Ltd., Beijing 100871, China
Bibliografia
  • [1] S.S. Peng, F. Du, J. Cheng, Y. Li, Automation in U.S. longwall coal mining: A state-of-the-art review. International Journal of Mining Science and Technology 29 (2), 151-159 (2019). DOI: https://doi.org/10.1016/j.ijmst.2019.01.005.
  • [2] G. Wang, Y. Xu, H. Ren, Intelligent and ecological coal mining as well as clean utilisation technology in China: Review and prospects. International Journal of Mining Science and Technology 29 (2), 161-169 (2019). DOI: https://doi.org/10.1016/j.ijmst.2018.06.005.
  • [3] W. Song, J. Cheng, W. Wang, Y. Qin, Z. Wang, M. Borowski, P. Tukkaraja, Underground Mine Gas Explosion Accidents and Prevention Techniques – An overview. Archives of Mining Sciences 66 (2), 297-312 (2021). DOI: https://doi.org/10.24425/ams.2021.137463.
  • [4] J. Wang, M. Jia, L. Bin, L. Wang, D. Zhong, Regulation and Optimization of Air Quantity in a Mine Ventilation Network with Multiple Fans. Archives of Mining Sciences 67 (1), 179-193 (2022). DOI: https://doi.org/10.24425/ams.2022.140709.
  • [5] S. Şalap, M. O. Karslıoğlu, N. Demirel, Development of a GIS-based monitoring and management system for underground coal mining safety. International Journal Of Coal Geology 80 (2), 105-112 (2009). DOI: https://doi.org/10.1016/j.coal.2009.08.008.
  • [6] G. Wang, G. Zhao, H. Ren, Analysis on key technologies of intelligent coal mines and intelligent mining. Meitan Xuebao/Journal of the China Coal Society 44 (1), 34-41 (2019). DOI: https://doi.org/10.13225/j.cnki.jccs.2018.5034.
  • [7] S. Mao, J. Cui, S. Wang, X. Tu, P. Zhang, M. Li, Construction of an information sharing platform of mine safe production for intelligent mining. Meitan Xuebao/Journal of the China Coal Society 45 (6), 1937-1948 (2020). DOI: https://doi.org/10.13225/j.cnki.jccs.ZN20.0341.
  • [8] M. Van Dyke, T. Klemetti, J. Wickline, Geologic data collection and assessment techniques in coal mining for ground control. International Journal of Mining Science and Technology 30 (1), 131-139 (2020). DOI: https://doi.org/10.1016/j.ijmst.2019.12.003.
  • [9] D.C. Reid, D.W. Hainsworth, J.C. Ralston, R.J. McPhee, Shearer guidance: A major advance in longwall mining. In: S. Yuta , H. Asama (Eds), Field and Service Robotics. Springer Tracts in Advanced Robotics 24. Springer, Berlin, Heidelberg 2006.
  • [10] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, E. Aboutanios, Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications. IEEE Communications surveys and tutorials 19 (2), 1327-1346 (2017). DOI: https://doi.org/10.1109/COMST.2016.2632427.
  • [11] N. Wang, X. L. Shen, Research on WSN nodes location technology in coal mine. In: Q. Zhou(Eds.), IFCSTA 2009 Proceedings - 2009 International Forum on Computer Science-Technology and Applications, IEEE 2009.
  • [12] B. Srikanth, H. Kumar, K.U.M. Rao, A robust approach for WSN localization for underground coal mine monitoring using improved RSSI technique. Mathematical Modelling of Engineering Problems 5 (3), 225-231 (2018). DOI: https://doi.org/10.18280/mmep.050314.
  • [13] F. Evennou, F. Marx, Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning. EURASIP Journal on Advances in Signal Processing 2006 (1), 086706 (2006). DOI: https://doi.org/10.1155/ASP/2006/86706.
  • [14] C.O. Hargrave, C.A. James, J.C. Ralston. Infrastructure-based localisation of automated coal mining equipment. International Journal of Coal Science & Technology 4 (3), 252-261 (2017). DOI: https://doi.org/10.1007/s40789-017-0180-3.
  • [15] S. Huh, U. Lee, H. Shim, J.-B. Park, J.-H. Noh, Development of an unmanned coal mining robot and a tele-operation system.In: 2011 11th International Conference on Control, Automation and Systems, IEEE 2011.
  • [16] X. Yang, X. Yu, C. Zhang, S. Li, Q. Niu, MineGPS: Battery-free Localization Base Station for Coal Mine Environment. IEEE communications letters:1-1. (2021). DOI: https://doi.org/10.1109/LCOMM.2021.3081593.
  • [17] J. Zheng, S. Li, N. Li, Q. Fu, S. Liu, G. Yan, A LiDAR-Aided Inertial Positioning Approach for a Longwall Shearer in Underground Coal Mining. Mathematical Problems in Engineering 2021, 6616090 (2021). DOI: https://doi.org/10.1155/2021/6616090.
  • [18] J. Xu, E. Wang, R. Zhou, Real-time measuring and warning of surrounding rock dynamic deformation and failure in deep roadway based on machine vision method. Measurement 149, 107028 (2020). DOI: https://doi.org/10.1016/j.measurement.2019.107028.
  • [19] J. Zhou, H. Xiao, W. Jiang, W. Bai, G. Liu, Automatic subway tunnel displacement monitoring using robotic total stations. Measurement, Journal of the International Measurement Confederation 151,107251 (2020). DOI: https://doi.org/10.1016/j.measurement.2019.107251.
  • [20] B. Liu, Y. Wei, Optimization of Location of Robotic Total Station in Tunnel Deformation Monitoring. In: W. Wu, H. Yu (Eds.), Proceedings of China-Europe Conference on Geotechnical Engineering, Cham: Springer International Publishing 2018.
  • [21] J. Zhou, B. Shi, G. Liu, S. Ju, Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station. PLoS One 16(5) (2021). DOI: http://dx.doi.org/10.1371/journal.pone.0251281.
  • [22] J. Yu, P. Zhu, B. Xu, X. Meng, Experimental assessment of high sampling-rate robotic total station for monitoring bridge dynamic responses. Measurement 104, 60-69 (2017). DOI: https://doi.org/10.1016/j.measurement.2017.03.014.
  • [23] P.A. Psimoulis, S.C. Stiros, Measuring deflections of a short-span railway bridge using a robotic total station. Journal of Bridge Engineering 18(2),182-185 (2013). DOI: https://10.1061/(ASCE)BE.1943-5592.0000334.
  • [24] Z.G. Xia, C. Zhang, Y. Zheng, L.X. Jiang, An astronomical azimuth measurement system aided with an automatic gyro total station. In: K. Fan (Eds.), 3rd International Symposium on Precision Mechanical Measurements; 2006 Aug 02-06; Urumqi, Peoples r China. BELLINGHAM: Spie-Int Soc Optical Engineering 2006.
  • [25] Y. Yu, Z. Men, The baseline field establishes an instrument constant measuring of gyro total station. Engineering of Surveying and Mapping 24 (12), 72 (2015).
  • [26] T. Wang, H.R. Duan, L.T. Jiang, S. Liu, Analysis of Underground Space Azimuth Measuring and Data Processing in A Tunnel. In: C. Chen (Eds.), 4th International Conference on Civil Engineering, Architecture and Building Materials (CEABM); 2014 May 24-25; Haikou, Peoples R China. DURNTEN-ZURICH: Trans Tech Publications Ltd 2014.
  • [27] P.P. Bahuguna, Correlation survey for shaft deepening in Digwadih underground coal mine. J. Surv. Eng.-ASCE 129 (1), 33-36 (2003). DOI: https://doi.org/10.1061/(asce)0733-9453(2003)129:1(33).
  • [28] X. Zhang, W. Liu, F. Xie, L. Shi, Application research on some problems of mine connection measurement. En gineering of Surveying and Mapping 29 (6), 44 (2020).
  • [29] S. Mao, X. Zhang, X. Li, Y. Tai, H. Chen, J. Liu, inventor; Beijing Longruan Technologies INC. & Tianjin Navigation Instruments Research Institute,assignee. Measuring-robot device for fully mechanised coal mining face and automatic measuring system. Chinese patent: CN112378390B,2021.05.25.
  • [30] S. Mao, X. Zhang, X. Li, Y. Tai, H. Chen, J. Liu, inventor; Beijing Longruan Technologies INC. & Tianjin Navigation Instruments Research Institute,assignee. Measuring-robot device for fully mechanised coal mining face and automatic measuring system. Canada Patent: CA3144609A, 2022.04.19.
  • [31] S. Mao, X. Zhang, X. Li, Y. Tai, H. Chen, J. Liu, inventor; Beijing Longruan Technologies INC. & Tianjin Navigation Instruments Research Institute,assignee. Measuring-robot device for fully mechanised coal mining face and automatic measuring system. United States patent: US20220221276A1, 2022.07.14.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5aeb33c9-734c-4f86-b8c3-a84aa9649fae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.