Warianty tytułu
Języki publikacji
Abstrakty
Existing underground lightning electromagnetic field predictive methods are only relevant to conductivity distributions that are homogeneous or layered. In order to expand the scope of application of lightning electromagnetic field computation, the effect of heterogeneous soil conductivity on the electromagnetic field of lightning return is examined in depth. The current distribution in the lightning return channel is characterized by the dual Heidler discharge channel base current and MTLE return model. Using the full-wave finite element approach, a two-dimensional axisymmetric model is created. The time distribution characteristics of the lightning electromagnetic field in a soil with heterogeneous conductivity are evaluated. According to the research, the lightning electromagnetic field's, horizontal electric field, vertical electric field, and azimuthal magnetic field components are negatively, bipolarly, and positively distributed in the subsurface, respectively. The horizontal electric field dominates the subterranean electromagnetic field. The high conductivity of the soil has a significant attenuation effect on the high-frequency components of the lightning electromagnetic field's three electromagnetic components. The initial response of the horizontal electric field of a nonhomogeneous soil is dependent on the conductivity at the surface of soil, followed by a gradual dependence on the conductivity in deeper soil sections. The subsurface distribution of vertical electric and azimuthal magnetic fields tend to stratify in response to a nonhomogeneous drop in soil conductivity.
Czasopismo
Rocznik
Tom
Strony
793--805
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Department of Civil Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
- Department of Civil Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China, raopingping@usst.edu.cn
autor
- Department of Civil Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
autor
- Department of Civil Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Bibliografia
- 1. Akbari M, Sheshyekani K, Pirayesh A et al (2013) Evaluation of lightning electromagnetic fields and their induced voltages on overhead lines considering the frequency dependence of soil electrical parameters. IEEE Trans Electromagn Compat 55(6):1210—1219
- 2. Aoki M, Baba Y, Rakov VA (2015) FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters. J Geophys Res Atmos 120(16):8043-8051
- 3. Chaladgarn T, Yooyuanyong S (2013) Mathematical model of magnetometric resistivity sounding for a conductive host with a bulge overburden. Appl Math Sci 7(5):335-348
- 4. Chumchob N (2004) Mathematical modelling of electromagnetic response on a multilayered earth with a layer having exponentially varying conductivity. Thai J Math 2(2):333-358
- 5. Cooray V (1992) Horizontal fields generated by return strokes. Radio Sci 27(04):529-537
- 6. Cooray V (2010) Horizontal electric field above-and underground produced by lightning flashes. IEEE Trans Electromagn Compat 52(4):936-943
- 7. Delfino F, Procopio R, Rossi M et al (2007) An algorithm for the exact evaluation of the underground lightning electromagnetic fields. IEEE Trans Electromagn Compat 49(2):401-411
- 8. Delfino F, Procopio R, Rossi M et al (2009) Influence of frequencydependent soil electrical parameters on the evaluation of lightning electromagnetic fields in air and underground. J Geophys Res Atmos. https://doi.org/10.1029/2008JD011127
- 9. Kim HS, Lee K (1996) Response of a multilayered earth with layers having exponentially varying resistivities. Geophysics 61(1):180-191
- 10. Kurnaz O, Aksoy S (2021) Electromagnetic fields radiated by lightning return stroke over lossy ground with rock formation. IEEE Trans Electromagn Compat 63(5):1444-1451
- 11. Mimouni A, Delfino F, Procopio R et al. (2007) On the computation of underground electromagnetic fields generated by lightning: A comparison between different approaches. In 2007 IEEE Lausanne Power Tech. IEEE, pp 772-777
- 12. Mimouni A, Rachidi F, Rubinstein M (2013) Electromagnetic fields of a lightning return stroke in presence of a stratified ground. IEEE Trans Electromagn Compat 56(2):413-418
- 13. Napolitano F, Borghetti A, Nucci CA et al (2013) Use of the full-wave finite element method for the numerical electromagnetic analysis of LEMP and its coupling to overhead lines. Electric Power Syst Res 94:24-29
- 14. Nucci CA, Diendorfer G, Uman MA et al (1990) Lightning return stroke current models with specifiedchannel-base current: a review and comparison. J Geophys Res Atmos 95(D12):20395-20408
- 15. Ouyang S, Zhang QL, Li Y et al (2012) Impact on lightning electromagnetic field propagation of soil electrical parameter variation induced by varying surface soil moisture. Meteorol Sci Technol 40(06):1018-1024 (in Chinese)
- 16. Paknahad J, Sheshyekani K, Hamzeh M et al. (2014a) Lightning electromagnetic fields and their induced voltages on overhead lines: the effect of a non-flat lossy ground. In: 2014a international conference on lightning protection (ICLP). IEEE. pp 591-594
- 17. Paknahad J, Sheshyekani K, Rachidi F et al (2014b) Lightning electromagnetic fields and their induced currents on buried cables Part II The effect of a horizontally stratified ground. IEEE Trans Electromag Compat 56(5):1146-1154
- 18. Paknahad J, Sheshyekani K, Hamzeh M et al (2015) The influence of the slope angle of the ocean-land mixed propagation path on the lightning electromagnetic fields. IEEE Trans Electromagn Compat 57(5):1086-1095
- 19. Rachidi F, Janischewskyj W, Hussein AM et al (2001) Current and electromagnetic field associated with lightning return strokes to tall towers. IEEE Trans Electromagn Compat 43(3):356-367
- 20. Shoory A, Rachidi F, Delfino F et al (2011) Lightning electromagnetic radiation over a stratified conducting ground: 2. Validity of simplified approaches. J Geophys Res Atmos. https://doi.org/10.1029/ 2010JD015078
- 21. Sripanya W (2014) Mathematical modelling of magnetic field from heterogeneous media with a homogeneous overburden. Int J Pure Appl Math 94(1):37-44
- 22. Sripanya W, Yooyuanyong S (2012) Mathematical inverse problem of magnetic field from exponentially varying conductive ground. Appl Math Sci 6(113):5639-5647
- 23. Tunnurak P, Kanyamee N, Yooyuanyong S (2015) Finite element magnetic field response of an exponential conductivity ground profile. Appl Math Sci 9(52):2579-2594
- 24. Wang XJ, Chen YZ, Wan HJ et al (2017a) Characteristics of lightning electromagnetic fields from oblique lightning channel considering vertical stratified ground. J Electron Inf Technol 39(02):466-473 (in Chinese)
- 25. Wang XJ, Chen YZ, Wan HJ et al (2017b) The influence of horizontal layered ground conductivity on oblique discharge channel lemp em fields. Journal of Microeaves 33(02):89-96 (in Chinese)
- 26. Yang YQ, Liu YP, Liu FF et al (2021) Research on influence of different soil types and moisture on lightning electromagnetic field based on fdtd. J Trop Meteorol 37(03):348-357 (in Chinese)
- 27. Yooyuanyong S (2000) Electromagnetic response over a varying conductive ground. Songklanakarin J Sci Technol 22(4):457-466
- 28. Zhang SQ, Wu Q (2013) Distribution characteristics of lightning electromagnetic pulsed fields under the ground. Acta Physica Sinica 62(02):563-575 (in Chinese)
- 29. Zhang Y, Gu J, Zhang E (2020) Analysis of underground propagation effects of lightning electromagnetic fields in different geological environments. Int J Appl Electromagnet Mech 62(4):861-873
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5ac36924-96b2-49e4-833b-4af47eab77ca