Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 1 | 84--92
Tytuł artykułu

A fractional study of mhd casson fluid motion with thermal radiative flux and heat injection/suction mechanism under ramped wall condition: application of rabotnov exponential kernel

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of this research is to extend the concept of fractionalized Casson fluid flow. In this study, a comprehensive analysis of magnetohydrodynamic (MHD) natural convective flow of Casson fluid is conducted, focusing on obtaining analytical solutions using the non-integer-order derivative known as the Yang–Abdel-Aty–Cattani (YAC) operator. The YAC operator utilized in this research possesses a more generalized exponential kernel. The fluid flow is examined in the vicinity of an infinitely vertical plate with a characteristic velocity denoted as 𝑢0. The mathematical modelling of the problem incorporates partial differential equations, incorporating Newtonian heating and ramped conditions. To facilitate the analysis, a suitable set of variables is introduced to transform the governing equations into a dimensionless form. The Laplace transform (LT) is then applied to the fractional system of equations, and the obtained results are presented in series form and also expressed in terms of special functions. The study further investigates the influence of relevant parameters, such as 𝛼, 𝛽, 𝑃𝑟, 𝑄, 𝐺𝑟, 𝑀, 𝑁𝑟 and 𝐾, on the fluid flow to reveal interesting findings. A comparison of different approaches reveals that the YAC method yields superior results compared to existing operators found in the literature. Graphs are generated to illustrate the outcomes effectively. Additionally, the research explores the limiting cases of the Casson and viscous fluid models to derive the classical form from the YAC fractionalized Casson fluid model.
Wydawca

Rocznik
Strony
84--92
Opis fizyczny
Bibliogr. 43 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Cankaya University, Etimesgut 06790, Ankara, Turkey, fahd@cankaya.edu.tr
  • Department of Medical Research, China Medical University, Taichung 40402, Taiwan
  • Department of Mathematics, University of Management and Technology Lahore, Pakistan, bilal.riaz@umt.edu.pk
  • Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
Bibliografia
  • 1. Kahshan M, Lu D, Siddiqui AM. A Jeffrey fluid model for a porous-walled channel: Application to flat plate dialyzer, Sci. Rep. 2019;9(1):1-18.
  • 2. Mohebbi R, Delouei AA, Jamali A, Izadi M, Mohamad AA. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convec-tion in partially porous media: Thermal lattice Boltzmann method, Physica A. 2019; 525: 642-656.
  • 3. Riaz MB, Rehman AU, Wojciechowski A, Atangana A. Heat and mass flux analysis of magneto-free-convection flow of Oldroyd-B fluid through porous layered inclined plate. Sci Rep. 2023;13: 653. https://doi.org/10.1038/s41598-022-27265-w
  • 4. Riaz MB, Abro KA, Abualnaja KM. Akgül A. Rehman AU, Abbas M, Hamed YS. Exact solutions involving special functions for unsteady convective flow of magnetohydrodynamic second grade fluid with ramped conditions, Advances in Difference Equations. 2021; 408. https://doi.org/10.1186/s13662-021-03562-y
  • 5. Riaz MB, Awrejcewicz J, Rehman AU. Functional Effects of Permea-bility on Oldroyd-B Fluid under Magnetization: A Comparison of Slip-ping and Non-Slipping Solutions. Appl. Sci. 2021; 11: 11477 https://doi.org/10.3390/app112311477.
  • 6. Khan Z, Tairan N, Mashwani WK, Rasheed HU, Shah ., Khan W. MHD and slip effect on two-immiscible third grade fluid on thin film flow over a vertical moving belt, Open Phys. 2019; 17 (1); 575-586.
  • 7. Casso N. A flow equation for pigment-oil suspensions of the printing ink type. In Rheology of Disperse Systems. Ed. Mill, C. C. Pergamon Press, Oxford. 1959; 84-104.
  • 8. Hussain M, Ali A, Ghaffar A. et al. Flow and thermal study of MHD Casson fluid past a moving stretching porous wedge. J Therm Anal Calorim.2022;147:6959-6969. https://doi.org/10.1007/s10973-021-10983-0
  • 9. Hussain M, Ghaffar A, Ali A, Shahzad A, Nisar KS, Alharthi MR, Jamshed W. MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition, Alexandria Engineering Jour-nal.2021;60(6):5473—5483. https://doi.org/10.1016/j.aej.2021.03.042
  • 10. Ali A, Hussain M, Anwar MS. et al. Mathematical modeling and parametric investigation of blood flow through a stenosis artery. Appl. Math. Mech.-Engl. Ed.2021; 42:1675-1684. https://doi.org/10.1007/s10483-021-2791-8
  • 11. Khalid A, Khan I, Khan A, Shafie S. Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Technol. Int. J. 2015;18(3):309-317.
  • 12. Hussain M, Ali A, Inc M, Sene N, Hussan M. Impacts of Chemical Reaction and Suction/Injection on the Mixed Convective Williamson Fluid past a Penetrable Porous Wedge, Journal of Mathematics. 2022. https://doi.org/10.1155/2022/3233964
  • 13. Bhattacharyya K, Hayat T, Alsaedi A. Analytic solution for magneto-hydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer. Chin. Phys. B. 2013;22(2): 024702.
  • 14. Oka S. An approach to $\alpha$ unified theory of the flow behavior of time-independent non-Newtonian suspensions. Jpn. J. Appl. Phys.1971; 10(3): 287.
  • 15. Riaz MB, Awrejcewicz J Rehman AU, Abbas M. Special functions-based solutions of unsteady convective flow of a MHD Maxwell fluid for ramped wall temperature and velocity with concentration. Ad-vances in Difference Equations 2021. https://doi.org/10.1186/s13662-021-03657-6
  • 16. Hussain Z, Alshomrani AS. Muhammad T, Anwar MS. Entropy analysis in mixed convective flow of hybrid nanofluid subject to melt-ing heat and chemical reactions, Case Studies in Thermal Engineer-ing.2022;34. https://doi.org/10.1016/j.csite.2022.101972.
  • 17. Mernone AV, Mazumdar JN, Lucas SK. A mathematical study of peristaltic transport of a Casson fluid. Math. Comput. Model. 2002; 35(7-8): 895-912.
  • 18. Arthur EM, Seini IY, Bortteir B. Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field. J Appl. Math. Phys. 2015;3:713-723.
  • 19. Mukhopadhyay S. Effects of thermal radiation on Casson fluid flow and heat transfer over an unsteady stretching surface subjected to suction/blowing. Chin. Phys. B.2013;22(11): 114702.
  • 20. Mustafa M, Hayat T, Pop I, Aziz A. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf. 2011;40(6): 563-576.
  • 21. Rehman AU, Riaz MB, Khan I, Mohamed A. Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator. AIMS Mathematics, 2023; 8(4): 8185-8209. https://doi.org/10.3934/math.2023414.
  • 22. Riaz MB, Rehman AU Awrejcewicz J Akgül A. Power Law Kernel Analysis of MHD Maxwell Fluid with Ramped Boundary Conditions: Transport Phenomena Solutions Based on Special Functions. Fractal Fract.2021;5:248. https://doi.org/10.3390/fractalfract5040248.
  • 23. Rehman AU, Riaz MB, Rehman W, Awrejcewicz J, Baleanu D. Fractional Modeling of Viscous Fluid over a Moveable Inclined Plate Subject to Exponential Heating with Singular and Non-Singular Ker-nels. Math. Comput. Appl. 2022; 27: 8. https://doi.org/10.3390/mca27010008
  • 24. Kumar S, Ghosh S, Samet B, Doungmo Goufo EF. An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Mathematical Methods in the Applied Sciences.2020;43(9):6062-6080. https://doi.org/10.1002/mma.6347.
  • 25. Bagley RL, Torvik PJ. A theoretical basis for the application of frac-tional calculus to viscoelasticity, J. Rheol. 1983; 27 (3): 201-210.
  • 26. Rehman AU, Riaz MB, Atangana A, Jarad F, Awrejcewicz J. Thermal and concentration diffusion impacts on MHD Maxwell fluid: A gener-alized Fourier’s and Fick’s perspective, Case Studies in Thermal En-gineering.2022;35. https://doi.org/10.1016/j.csite.2022.102103
  • 27. Riaz MB, Awrejcewicz J, Rehman AU, Akgül A. Thermophysical Investigation of Oldroyd-B Fluid with Functional Effects of Permeabil-ity: Memory Effect Study Using Non-Singular Kernel Derivative Ap-proach. Fractal Fract. 2021; 5: 124. https://doi.org/10.3390/fractalfract5030124
  • 28. Rehman AU, Jarad F, Riaz MB, Shah ZH. Generalized Mittag-Leffler Kernel Form Solutions of Free Convection Heat and Mass Transfer Flow of Maxwell Fluid with Newtonian Heating: Prabhakar Fractional Derivative Approach. Fractal Fract. 2022; 6: 98. https://doi.org/10.3390/fractalfract6020098.
  • 29. Mohammadi H, Kumar S, Rezapour S, Etemad S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons & Fractals.2021; 144. https://doi.org/10.1016/j.chaos.2021.110668.
  • 30. Rehman AU, Riaz MB, Wojciechowski A. Thermo diffusion impacts on the flow of second grade fluid with application of (ABC), (CF) and (CPC) subject to exponential heating. Sci Rep. 2022; 12:18437 https://doi.org/10.1038/s41598-022-21773-5.
  • 31. Kumar S, Nisar KS, Kumar R, Cattani C, Samet B. A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. Mathematical Methods in the Applied Sciences. 2020; 43(7): 4460-4471. https://doi.org/10.1002/mma.6208
  • 32. Jleli M, Kumar S, Kumar R, Samet B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method, Alexandria Engineering Journal. 2020; 59(5): 2859-2863. https://doi.org/10.1016/j.aej.2019.12.022
  • 33. Hayat T, Sajjad R, Asghar S. Series solution for MHD channel flow of a Jeffery fluid, Commun. Nonlin. Sci. Numer. Simulat. 2010; 15(9):2400-2406. https://doi.org/10.1016/j.cnsns.2009.09.033.
  • 34. Kumar S, Chauhan RP. Momani S., Hadid S. Numerical investiga-tions on COVID-19 model through singular and non-singular fraction-al operators. Numerical Methods for Partial Differential Equations. https://doi.org/10.1002/num.22707.
  • 35. Rehman AU, Riaz MB., Saeed ST, Jarad F, Jasim H N., Enver A. An Exact and Comparative Analysis of MHD Free Convection Flow of Water-Based Nanoparticles via CF Derivative, Mathematical Prob-lems in Engineering. 2022. https://doi.org/10.1155/2022/9977188.
  • 36. Riaz MB, Rehman AU, Awrejcewicz J. Double Diffusive Magneto-Free-Convection Flow of a Maxwell Fluid Over a Vertical Plate: Spe-cial Functions Based Analysis using Local and Non-Local Kernels to Heat and Mass Flux subject to Exponential Heating, Fractals. 2022; 30(5). https://doi.org/10.1142/S0218348X22401570.
  • 37. Rehman AU, Riaz MB, Atangana A. Time fractional analysis of Casson fluid with Rabotnov exponential memory based on the gen-eralized Fourier and Fick... s law, Scientific African. 2022;17: e01385, https://doi.org/10.1016/j.sciaf.2022.e01385.
  • 38. Kumar S, Kumar A, Samet B, Dutta H. A study on fractional host–parasitoid population dynamical model to describe insect species. Numerical Methods for Partial Differential Equations. 2021; 37(2): 1673-692. https://doi.org/10.1002/num.22603.
  • 39. Anwar MS, Irfan M, Hussain M, Muhammad T, Hussain Z. Heat Transfer in a Fractional Nanofluid Flow through a Permeable Medi-um, Mathematical Problems in Engineering.2022. https://doi.org/10.1155/2022/3390478
  • 40. Anwar T, Kumam P, Watthayu W. Unsteady MHD natural convection flow of Casson fluid incorporating thermal radiative flux and heat in-jection/suction mechanism under variable wall conditions. Sci Rep. 2021;11: 4275. https://doi.org/10.1038/s41598-021-83691-2.
  • 41. Khalid A, Khan I, Khan A, Shafie S. Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Technol. Int. J. 2015;18(3):309-317
  • 42. Mustafa M, Khan JA. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Adv. 2015;5(7): 077148.
  • 43. Yang XJ, Abdel-Aty M, Cattani C. A new general fractional order derivative with Rabotnov fractional exponential kernel applied to model the anomalous heat.Thermal Science. 2019; 23(3A): 1677-1681.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-59e2e749-cb60-4fba-913c-18316768be21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.