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Abstract: The primary objective of this research is to extend the concept of fractionalized Casson fluid flow. In this study, a comprehensive 
analysis of magnetohydrodynamic (MHD) natural convective flow of Casson fluid is conducted, focusing on obtaining analytical solutions 
using the non-integer-order derivative known as the Yang–Abdel-Aty–Cattani (YAC) operator. The YAC operator utilized in this research 
possesses a more generalized exponential kernel. The fluid flow is examined in the vicinity of an infinitely vertical plate with a characteristic 
velocity denoted as 𝑢0. The mathematical modelling of the problem incorporates partial differential equations, incorporating Newtonian 

heating and ramped conditions. To facilitate the analysis, a suitable set of variables is introduced to transform the governing equations  
into a dimensionless form. The Laplace transform (LT) is then applied to the fractional system of equations, and the obtained results  
are presented in series form and also expressed in terms of special functions. The study further investigates the influence of relevant  
parameters, such as 𝛼, 𝛽, 𝑃𝑟, 𝑄, 𝐺𝑟, 𝑀, 𝑁𝑟 and 𝐾, on the fluid flow to reveal interesting findings. A comparison of different approaches 

reveals that the YAC method yields superior results compared to existing operators found in the literature. Graphs are generated  
to illustrate the outcomes effectively. Additionally, the research explores the limiting cases of the Casson and viscous fluid models to derive 
the classical form from the YAC fractionalized Casson fluid model. 
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1. INTRODUCTION 

Non-Newtonian fluids have gained significant importance 
among researchers and scientists in recent decades due to their 
wide range of applications in various fields. The complex nature of 
these fluids prevents the characterization of their mechanical 
properties using the Navier–Stokes equation, making a single 
constitutive equation inadequate for describing their rheological 
behaviour. The rheological behaviour of non-Newtonian fluids is of 
great significance in industrial and technological applications, 
such as petroleum, biological, plastic manufacturing, chemical, 
textile and cosmetic industries. Several models, including the 
viscoplastic model, second-grade fluid model, Williamson fluid, 
Bingham plastic model, power law model, Jeffery model, Brink-
man type fluid, Oldroyd-B model, Maxwell model, Walters-B fluid 
model, tangent hyperbolic fluid and Casson model (shear thinning 
liquid), have been developed to explain the diverse nature of non-
Newtonian fluids [1–6]. 

Among these models, the Casson fluid is considered the sim-
plest generalization of a Newtonian fluid. Casson fluid, introduced 
by Casson in 1959 to analyse the regime of pigment-oil suspen-
sions, is one of the most common types of non-Newtonian fluids 
[7]. The Casson fluid model allows for the determination of vis-
cous fluid behaviour by considering the impacts of its generalized 

parameters. Due to its important properties and wide range  
of applications, Casson fluid finds application in biological scienc-
es, such as plasma and the handling of biological fluids like blood, 
as well as in mechanics due to its viscoelastic behaviour. Given 
the current scientific challenges, mathematicians, researchers, 
scientists and engineers are particularly focused on studying 
Casson fluid in fields like biology, engineering, chemistry, petrole-
um industries and physiology, considering its natural behaviour. 
Hussain et al. [8] employed the Homotopy analysis method, an 
analytical technique, to investigate series solutions for magneto-
hydrodynamic (MHD) Casson fluid in the thermal boundary layer 
flow over a moving stretching porous wedge. Additionally, Hussain 
et al. [9] discussed the solution of the MHD thermal boundary 
layer flow of Casson liquid over a penetrable extending wedge 
with ohmic heating and convective boundary conditions. 

Ramped conditions refer to a flow condition where the shear 
rate of a fluid gradually changes over time. This approach is 
commonly employed in the investigation of non-Newtonian fluids 
to gain insights into their flow behaviour and properties under 
different circumstances. In the pharmaceutical industry, ramped 
conditions are utilized to study the rheological behaviour of com-
plex fluids like suspensions and emulsions, which often exhibit 
non-Newtonian characteristics. The application of ramped condi-
tions extends to the oil and gas industry, where they are employed 
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to model the flow of non-Newtonian fluids. Understanding the 
rheological behaviour of drilling mud and other fluids is crucial for 
optimizing drilling operations. In the field of biomedical engineer-
ing, ramped conditions are used to study blood flow in arteries 
and veins. The behaviour of non-Newtonian fluids plays a critical 
role in comprehending the pathophysiology of diseases such as 
atherosclerosis. Ali et al. [10] developed a mathematical model to 
examine blood flow through a cylindrical stenosed blood vessel. 
Overall, ramped conditions have significant applications in the 
study of non-Newtonian fluids. They enable researchers to gain a 
better understanding of the flow behaviour of these fluids under 
various conditions, which is essential for optimizing their perfor-
mance in diverse applications. Khalid et al. [11] investigated the 
MHD unsteady free convectional transport of the Casson model, 
considering computational aspects in porous media. Hussain et al. 
[12] discussed the effects of chemical reactions and suc-
tion/injection on the flow of Williamson fluid along a porous 
stretching wedge. Bhattacharyya et al. [13] described the MHD 
flow of Casson fluid velocity in the presence of an exponentially 
stretching surface. Oka [14] conducted the first-time analysis of 
Casson fluid movement, considering convective conditions at the 
boundary through a permeable stretching sheet, and analysed the 
results theoretically. Riaz et al. [15] investigated the impacts of 
heat generation on MHD Maxwell fluid in a permeable medium. 
Hussain et al. [16] analyzed the flow of a hybrid nanofluid under 
the influence of MHD, variable viscosity and mixed convection. 
Mernone et al. [17] examined the two-dimensional peristaltic flow 
of Casson fluid in a channel. Arthur et al. [18] investigated the 
generalized peristaltic flow of Casson fluid in a permeable channel 
subjected to chemical reaction effects. Mukhopadhyay [19] exam-
ined the heat transfer phenomenon of MHD Casson fluid with heat 
suction/blowing passing over a stretching plate. Mustafa et al. [20] 
analysed the unsteady flow of the Casson model using the ho-
motopy analysis method to study heat transfer over a movable flat 
plate. Similar studies on MHD Casson fluid can be found in the 
literature [21–23] and references therein. 

Fractional calculus has diverse and significant impacts in vari-
ous fields such as electrical engineering, electrochemistry, control 
theory, electromagnetism, mechanics, image processing, bioengi-
neering, physics, finance and fluid dynamics. It is a valuable tool 
for research and study due to its wide-ranging applications. Frac-
tional derivatives not only capture the present behaviour of sys-
tems but also account for their past behaviour, making them 
particularly suitable for systems with long-term memory. Its appli-
cations extend beyond physical sciences to areas like biology, 
astrophysics, ecology, geology and chemistry. In the past dec-
ades, fractional calculus has successfully elucidated the mecha-
nisms of non-Newtonian models by providing a simple and ele-
gant description of their complex behaviour. One well-known type 
of non-Newtonian fluid is viscoelastic fluid, which exhibits both 
elasticity and viscosity. These fluid models have significant impli-
cations in polymerization, industrial and mechanical engineering, 
as well as the automobile industry, due to their inherent character-
istics. Fractional calculus plays a crucial role in interpreting the 
viscoelastic nature of materials. Given these remarkable proper-
ties, researchers have dedicated attention to analysing the frac-
tional behaviour of different fluid models, either directly or indirect-
ly, particularly when considering non-integer-order derivatives. For 
example, Kumar et al. [24] illustrated the multidimensional heat 
equations of arbitrary order using the analytical approaches of the 
homotopy perturbation transform method (HPTM) and residual 
power series method, employing a new fractional operator in the 

Yang–Abdel-Aty–Cattani (YAC) sense. Bagley and Torvik [25] 
explored the application of fractional calculus to viscoelastic fluids. 
Rehman et al. [26] investigated the fractional Maxwell fluid and 
obtained closed solutions for shear stress and velocity. Riaz et al. 
[27] analysed the influence of MHD on the heat transfer of frac-
tionalized Oldroyd-B fluid. Additionally, Rehman et al. [28] studied 
certain features of Maxwell fluid, considering the impact of Newto-
nian heating and developed a fractional model using the Prab-
hakar fractional approach. Mohammadi et al. [29] utilized the 
Euler method for fractional-order Caputo Fabrizio derivative to 
approximate the system’s solution and analyse the effects of the 
mumps virus. Rehman et al. [30] performed a comparative analy-
sis of ABC, CF and CPC methods for a second-grade fluid under 
the influence of Newtonian heating, obtaining series solutions. 
Kumar et al. [31] proposed a new generalized fractional derivative 
that produces different types of singular and nonsingular fractional 
derivatives based on various kernels. Jleli et al. [32] presented a 
general framework of the HPTM for the analytic treatment of time-
fraction partial differential equations following the YAC approach. 
Furthermore, Hayat et al. [33] obtained a series solution for the 
flow of Jeffery fluid, highlighting the contributions of fractional 
calculus to viscoelastic fluids in various studies [34–39]. 

In a recent study, Anwar et al. [40] investigated the classical 
version of the Casson fluid model with ramped boundary condi-
tions using the Laplace transformation method. This method is 
efficient for non-uniform boundary conditions, but it does not 
consider the fractional behaviour effect in the presented model. It 
was observed that the Casson fluid model with the innovative 
fractional operator, known as the YAC operator, which has a non-
local and singular kernel, has not been previously studied in con-
junction with ramped boundary conditions for velocity and energy 
distribution through porous media in the literature on fractional 
models in fluid mechanics. Motivated by these findings, this article 
focuses on the heat transfer analysis of the MHD fractional Cas-
son fluid in a channel with ramped conditions. The integer-order 
derivative Casson fluid model is transformed into the non-integer-
order derivative YAC model. The Laplace transform (LT) is used 
to obtain analytical solutions for the problem at hand. The velocity 
and temperature are evaluated in series form, providing exact 
solutions that have not been reported in the previous literature. 
Therefore, this article contributes valuable insights to the existing 
literature by presenting a wide range of exact solutions for the 
Casson fluid with appropriate boundary conditions. The influence 
of embedded parameters, including the YAC fractional parameter 
 , porosity parameter K, Casson fluid parameter  , Prandtl 

parameter Pr, magnetic number M, heat injection/suction parame-
ter Q, Grashof number Gr and radiation parameter Nr, on the 
velocity profile and heat distribution, are analysed using graphical 
representations. 

2. MATHEMATICAL MODEL 

In this study, we investigate the heat transfer phenomenon in 
the convective flow of an MHD Casson fluid over a vertically 
oriented infinite plate. The coordinate axis system is set up such 

that the plate is fixed along the x-axis, and the ∅-axis is perpen-
dicular to the plate (as depicted in Fig. 1). Initially, at time 𝑡 = 0, 

the fluid is at rest with the ambient temperature 𝑇∞. Ramped 

conditions are applied to the velocity for 𝑡 > 0, with the wall 

temperature set as 𝑇𝑤. 
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Fig. 1. Schematic drawing of the flow model 

The velocity component 𝑢(𝜑, 𝑡) is considered along the x-

axis, where 𝑢0 represents the characteristic velocity, and the fluid 

flow is confined to 𝜑 > 0. We make certain assumptions in our 
model. First, a vertical transverse magnetic force is introduced 
and exerted on the fluid flow, and the fluid motion is assumed to 
be unidirectional. We neglect the influence of the induced magnet-
ic field due to the small value of the Reynolds parameter/number. 

Viscous dissipation, Joule heating, radiative heat flux (𝑄𝑟) and 
any other external heat sources are also disregarded. Additionally, 
we assume that the fluid velocity in this problem is only dependent 

on the two parameters, 𝜑 and t. Under these assumptions, the 
governing equations for the fluid flow, using Boussinesq’s approx-
imation [41, 42], can be expressed as follows: 

The following equations represent the momentum and energy 
equations: 

𝜕𝑢(𝜑,𝑡)

𝜕𝑡
= 𝜐 (1 +

1

𝛽
)

𝜕2𝑢(𝜑,𝑡)

𝜕𝜑2 + 𝑔𝛽𝑇(𝑇(𝜑, 𝑡) − 𝑇∞)            

−
𝜎

𝜌
𝐵0

2𝑢(𝜑, 𝑡) − 𝜐 (1 +
1

𝛽
)

𝜁

𝑘𝑝
𝑢(𝜑, 𝑡),                              (1) 

𝜌𝐶𝑝
∂𝑇(𝜑,𝑡)

∂𝑡
= −

∂𝑞(𝜑,𝑡)

∂𝜑
−

∂𝑄𝑟

∂𝜑
+ 𝑄0(𝑇(𝜑, 𝑡) − 𝑇∞),            (2) 

where 

[𝑄𝑟 = −
4𝜎1

3𝑘1

∂𝑇4

∂𝜑
; 𝑇4 ≈ 4𝑇∞

3 𝑇 − 3𝑇∞
4]. 

Fourier’s Law of thermal flux is written as 

𝑞(𝜑, 𝑡) = −𝑘
∂𝑇(𝜑,𝑡)

∂𝜑
.                                                          (3) 

The mathematical representation of the given problem, includ-
ing the associated initial conditions and ramped boundary condi-
tions, is presented as follows: 

𝑢(𝜑, 0) = 0,    𝑇(𝜑, 0) = 𝑇∞,    𝜑 ≥ 0,  

𝑢(0, 𝑡) = {
𝑢0

𝑡

𝑡0
,     0 < 𝑡 ≤ 𝑡0;

𝑢0,     𝑡 > 𝑡0

,  

𝑇(0, 𝑡) = {
𝑇∞ + (𝑇𝑤 − 𝑇∞)

𝑡

𝑡0
,     0 < 𝑡 ≤ 𝑡0;

𝑇𝑤 ,     𝑡 > 𝑡0

,  

𝑢(𝜑, 𝑡) → 0, 𝑇(𝜑, 𝑡) → 𝑇∞, as 𝜑 → ∞and 𝑡 > 0.              (4) 

A new set of quantities is introduced to non-dimensionalise 
the problem equations. This allows for a more convenient repre-
sentation of the equations without specific units. By utilizing these 
non-dimensional quantities, the problem can be analysed and 
compared across different scales or systems. 

𝑡∗ =
𝑢0

2𝑡

𝜐
,    𝜑∗ =

𝑢0𝜑

𝜐
,    𝑢∗ =

𝑢

𝑢0
,    𝑞∗ =

𝑞

𝑞0
,    𝑇∗ =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
,   

𝑞0 =
𝑘(𝑇𝑤−𝑇∞)𝑢0

𝜐
, 𝑄 =

𝑄0𝜐

𝜌𝐶𝑝𝑢0
2 , 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑤−𝑇∞)

𝑢0
3 ,  

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
, 𝑀 =

𝜎𝐵0
2𝜐

𝜌𝑢0
2 , 𝑁𝑟 =

16𝜎1𝑇∞
3

3𝑘𝐾1
,

1

𝐾
=

𝜐2𝜁

𝑘𝑝𝑢0
2.                    (5) 

Upon substituting the newly introduced entities, as defined in 

Eq. (5), into Eqs (1) and (2), and subsequently omitting the ∗ 
symbol, the equations undergo a transformation that results in a 
revised form. This process involves replacing the relevant varia-
bles or terms with their corresponding values based on the defini-
tions provided in Eq. (5). 

By applying these substitutions and simplifications, the equa-
tions are modified to better represent the desired form or struc-
ture, allowing for clearer mathematical expressions and further 
analysis. The specific details of the transformations depend on the 
specific equations and substitutions involved, as well as the con-
text in which they are applied. 

∂𝑢(𝜑,𝑡)

∂𝑡
= 𝑏

∂2𝑢(𝜑,𝑡)

∂𝜑2 − [𝑀 +
𝑏

𝐾
] 𝑢(𝜑, 𝑡) + 𝐺𝑟𝑇(𝜑, 𝑡),          (6) 

∂𝑇(𝜑,𝑡)

∂𝑡
= − (

1+𝑁𝑟

𝑃𝑟
)

∂𝑞(𝜑,𝑡)

∂𝜑
+ 𝑄𝑇,                                             (7) 

𝑞(𝜑, 𝑡) = −
∂𝑇(𝜑,𝑡)

∂𝜑
.                                                             (8) 

The non-dimensional forms of the initial and boundary condi-
tions are also considered in this context 

𝑢(𝜑, 0) = 0,    𝑇(𝜑, 0) = 0,for 𝜑 ≥ 0,                               (9) 

𝑢(0, 𝑡) = 𝑇(0, 𝑡) = {
𝑡     0 < 𝑡 ≤ 1
1     𝑡 > 1

,                             (10) 

𝑢(𝜑, 𝑡) → 0,    𝑇(𝜑, 𝑡) → 0 as 𝜑 → ∞and 𝑡 > 0,             (11) 

where 

𝑎 = 𝑏𝜃𝑄 + 𝑐, 𝑏 = 1 +
1

𝛽
, 𝑐 = 𝑀 +

𝑏

𝐾
, 𝑑 = 1 − 𝑏𝜃, 𝜃 =

𝑃𝑟

1+𝑁𝑟
.  

In this context, the term Grashof number is used to represent 
the parameter Gr, the Prandtl number is denoted by Pr, the radia-

tion parameter is represented by Nr, the magnetic number is 

denoted as M, permeability is represented by kp, thermal conduc-

tivity is denoted by k, the coefficient of Rossland absorption is 

denoted by k1, the Stefan–Boltzmann constant is represented by 
ó1, porosity is denoted by ξ, radiative heat flux is represented by 

Qr and porosity is defined as K. 

3. PRELIMINARIES 

In this article, the non-integer YAC time derivative is applied 
which is defined as 

𝑌𝐴𝐶𝐷𝑡
𝛼𝑓(𝑡) = ∫ Ψ𝛼

𝑡

0
(−℘(𝑡 − 𝜏)𝛼)𝑓′(𝜏)𝑑𝜏,                 (12)  

for 𝑡 > 0,0 < 𝛼 < 1, 

where 

Ψ(℘𝑧𝛼) = ∑
℘𝑛𝑧(𝑛+1)(𝛼+1)−1

Γ(𝑛+1)(𝛼+1)

∞
𝑛=0 ,    𝑧 ∈ ℂ,  
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and Ψ𝛼  denotes the Rabotnov exponential function of order 𝛼. 

Laplace transformation of this newly developed operator is de-
fined as follows: 

𝐿{𝑌𝐴𝐶𝐷𝑡
𝛼𝑓(𝑡)} =

1

𝜂𝛼+1

𝜂𝐿{𝑓(𝑡)}−𝑓(0)

1+℘𝜂−(𝛼+1) ,                                 (13) 

where 𝜂 represents LT parameter and 𝛼 used as a fractional 
parameter. 

4. FRACTIONAL FORMULATION OF GOVERNING  
EQUATIONS AND SOLUTIONS 

By replacing the regular time derivative with the YAC fraction-
al derivative in Eqs. (6)–(8), the modified equations for the time-
fractional rate-type fluid model describing velocity and energy are 
obtained. This substitution allows for a more accurate representa-
tion of fractional behaviour, as the YAC fractional derivative incor-
porates non-local and singular kernels. Hence, the resulting equa-
tions provide a comprehensive framework for understanding the 
dynamics of the fluid in terms of velocity and energy within the 
context of a time-fractional rate-type fluid model. 

𝑌𝐴𝐶𝐷𝑡
𝛼𝑢(𝜑, 𝑡) = 𝑏

∂2𝑢(𝜑,𝑡)

∂𝜑2 − 𝑐𝑢(𝜑, 𝑡) + 𝐺𝑟𝑇(𝜑, 𝑡),(14) 

𝑌𝐴𝐶𝐷𝑡
𝛼𝑇(𝜑, 𝑡) =

1

𝜃

∂2𝑇(𝜑,𝑡)

∂𝜑2 + 𝑄𝑇(𝜑, 𝑡).                    (15) 

The YAC fractional operator, denoted as 𝑌𝐴𝐶 𝐷𝑡
𝛼 , is utilized 

in the context mentioned above. More details regarding the prop-
erties of the YAC operator can be found in the study referenced 
as [43]. 

4.1. Investigation of exact solution for temperature profile 

By applying the LT to Eq. (15) while considering the trans-
formed conditions specified in Eqs (9)–(11), we obtain 

𝜂𝑇̅(𝜑,𝜂)−𝑇̅(𝜑,0)

𝜂𝛼+1+℘
=

1

𝜃

∂2𝑇̅(𝜑,𝜂)

∂𝜑2 + 𝑄𝑇̅(𝜑, 𝜂).           (16) 

With transformed boundary conditions 

𝑇̅(𝜑, 0) = 0,    𝑇̅(0, 𝜂) =
1 − 𝑒−𝜂

𝜂2
 

and 𝑇̅(𝜑, 𝜂) → 0 as 𝜑 → ∞.                                                  (17) 

By applying the Laplace transformation to Eq. (16), the solu-
tion for the energy can be derived as follows: 

𝑇̅(𝜑, 𝜂) = 𝑒1𝑒
−𝜑√𝜃(

𝜂

𝜂𝛼+1+℘
−𝑄)

+ 𝑒2𝑒
𝜑√𝜃(

𝜂

𝜂𝛼+1+℘
−𝑄)

.       (18) 

After implementing the transformed boundary conditions, the 
energy solution can be expressed as follows: 

𝑇̅(𝜑, 𝜂) = (
1−𝑒−𝜂

𝜂2 ) 𝑒
−𝜑√𝜃(

𝜂

𝜂𝛼+1+℘
−𝑄)

,

= 𝑇1(𝜑, 𝜂) − 𝑒−𝜂𝑇1(𝜑, 𝜂).

                              (19) 

To transform the solution in time variable again, we have to 
employ inverse Laplace transformation technique on Eq. (19). 

𝑇(𝜑, 𝑡) = 𝑇1(𝜑, 𝑡) − 𝑇1(𝜑, 𝑡)𝑃(𝑡 − 1).                              (20) 

 

In the above expression, 𝑃(𝑡 − 1) represents a Heaviside 
function and 

𝑇1(𝜑, 𝑡) = 䀂           (21) 

The current form of Eq. (21) makes it challenging to compute 
the Laplace inverse. Therefore, it is necessary to convert it into a 
series form, which will yield the following expression: 

𝑇1(𝜑, 𝑡) = 𝐿−1 {
1

𝜂2
∑ ∑

(−𝜑)𝜒(𝜃)
𝜒
2 (−𝑄)

𝜒
2−𝑛

Γ(
𝜒

2
+1)(𝜂)𝑛

𝜒!𝑛!Γ(
𝜒

2
−𝑛+1)(𝜂𝛼+1+℘)𝑛

∞
𝑛=0

∞
𝜒=0 } ,

= ∑ ∑
(−𝜑)𝜒(𝜃)

𝜒
2 (−𝑄)

𝜒
2−𝑛

Γ(
𝜒

2
+1)

𝜒!𝑛!Γ(
𝜒

2
−𝑛+1)

∞
𝑛=0

∞
𝜒=0 𝑡𝑛𝛼+1𝐸𝛼+1,𝑛𝛼+2

𝑛 (−℘𝑡𝛼+1),

 

by using 𝐿−1 {
𝜂𝛼𝛾−𝛽

(𝜂𝛼−℘)𝛾} = 𝑡𝛽−1𝐸𝛼,𝛽
𝛾

(℘𝑡𝛼). 

4.2. Investigation of exact solution for fluid velocity 

Applying the Laplace transformation into Eq. (14) with appro-
priate transformed conditions as defined in Eqs. (9)–(11), we get 

 
𝜂𝑢(𝜑,𝜂)−𝑢(𝜑,0)

𝜂𝛼+1+℘
= 𝑏

𝑑2𝑢(𝜑,𝜂)

𝑑𝜑2 − 𝑐𝑢̅(𝜑, 𝜂) + 𝐺𝑟𝑇̅(𝜑, 𝜂),      (22) 

with conditions are 

𝑢̅(𝜑, 0) = 0,    𝑢̅(0, 𝜂) =
1−𝑒−𝜂

𝜂2   

and 𝑢̅(𝜑, 𝜂) → 0 as 𝜑 → ∞.                                              (23) 

By substituting the computed temperature 𝑇̅(𝜑, 𝜂) obtained 
from Eq. (19) into Eq. (22), the resulting solution can be ex-
pressed in a simplified form as follows: 

𝑢̅(𝜑, 𝜂) = 𝑒5𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
+𝑐)

+ 𝑒6𝑒
𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
+𝑐)

+𝐺𝑟 (
1−𝑒−𝜂

𝜂2 )
𝑒

−𝜑√𝜃(
𝜂

𝜂𝛼+1+℘
−𝑄)

𝑎+
𝑑𝜂

𝜂𝛼+1+℘

.

          (24) 

By utilizing the transformed boundary conditions, we can as-
certain the unknown constant. Subsequently, the solution for the 
velocity in Eq. (24) can be expressed as follows: 

𝑢̅(𝜑, 𝜂) = (
1−𝑒−𝜂

𝜂2 ) 𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
+𝑐)

+
𝐺𝑟(1−𝑒−𝜂)

𝜂2(𝑎+
𝑑𝜂

𝜂𝛼+1+℘
)

[𝑒
−𝜑√𝜃(

𝜂

𝜂𝛼+1+℘
−𝑄)

− 𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
+𝑐)

] .

  (25) 

To find Laplace inverse of Eq. (25), first we write it in the fol-
lowing form: 

𝑢̅(𝜑, 𝜂) = Ω̅(𝜑, 𝜂)

+𝐺𝑟Φ̅(𝜑, 𝜂)[𝑇̅(𝜑, 𝜂) − Ω̅(𝜑, 𝜂)]
                                         (26) 

and 

Ω̅(𝜑, 𝜂) = Ω1(𝜑, 𝜂) − 𝑒−𝜂Ω1(𝜑, 𝜂).                                (27) 

The inverse Laplace of Eq. (27) is obtained as 

Ω(𝜑, 𝑡) = Ω1(𝜑, 𝑡) − Ω1(𝜑, 𝑡)𝑃(𝑡 − 1),                            (28) 

where 
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Ω1(𝜑, 𝑡) = 𝐿−1{Ω1(𝜑, 𝜂)} = 𝐿−1 {
1

𝜂2 𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
+𝑐)

} ,

= 𝐿−1 {
1

𝜂2
∑ ∑

(−𝜑)𝜒(𝑐)
𝜒
2−𝑛

Γ(
𝜒

2
+1)(𝜂)𝑛

𝜒!𝑛!(𝑏)
𝜒
2 Γ(

𝜒

2
−𝑛+1)(𝜂𝛼+1+℘)𝑛

∞
𝑛=0

∞
𝜒=0 } ,

= ∑ ∑
(−𝜑)𝜒(𝑐)

𝜒
2−𝑛

Γ(
𝜒

2
+1)

𝜒!𝑛!(𝑏)
𝜒
2 Γ(

𝜒

2
−𝑛+1)

∞
𝑛=0

∞
𝜒=0 𝑡𝑛𝛼+1𝐸𝛼+1,𝑛𝛼+2

𝑛 (−℘𝑡𝛼+1),

  

Φ(𝜑, 𝑡) = 𝐿−1{Φ̅(𝜑, 𝜂)} = 𝐿−1 {
1

𝑎+
𝑑𝜂

𝜂𝛼+1+℘

},  

            = 𝐿−1 {∑
(−1)𝑚(𝑑)𝑚(𝜂)𝑚

(𝑎)𝑚+1(𝜂𝛼+1+℘)𝑚
∞
𝑚=0 }, 

         = ∑
(−1)𝑚(𝑑)𝑚

(𝑎)𝑚+1
∞
𝑚=0 𝑡𝑚𝛼−1𝐸𝛼+1,𝑚𝛼

𝑚 (−℘𝑡𝛼+1). 

The required velocity solution after employing the definition  
of inverse Laplace operator in Eq. (26) is 

𝑢(𝜑, 𝑡) = Ω(𝜑, 𝑡) + 𝐺𝑟Φ(𝜑, 𝑡) ∗ [𝑇(𝜑, 𝑡) − Ω(𝜑, 𝑡)].    (29) 

4.3. Limiting models 

This section focuses on specific cases that arise when certain 
physical parameters are not present. These cases provide an 
opportunity to examine the influence of different circumstances on 
the solutions. By exploring these scenarios, we can gain valuable 
insights into the system’s behaviour and characteristics when 
specific parameters are disregarded. This analysis contributes to 
a holistic understanding of the problem and deepens our 
knowledge of its dynamics. 

4.3.1 Solution in the absence of Casson parameter 

In this case, let us assume that the Casson fluid parameter, 

denoted as 𝛽, is chosen to be extremely large, meaning 1/𝛽 →
0. After this transformation, the velocity field solution of the newly 
derived viscous fluid, obtained from the previously calculated 
velocity Eq. (25), can be expressed as 

𝑢̅(𝜑, 𝜂) = (
1−𝑒−𝜂

𝜂2 ) 𝑒
−𝜑√(

𝜂

𝜂𝛼+1+℘
+𝑐1)

+
𝐺𝑟(1−𝑒−𝜂)

𝜂2(𝑎1+
𝑑1𝜂

𝜂𝛼+1+℘
)

[𝑒
−𝜑√𝜃(

𝜂

𝜂𝛼+1+℘
−𝑄)

− 𝑒
−𝜑√(

𝜂

𝜂𝛼+1+℘
+𝑐1)

] ,

 (30) 

where 𝑎1 = 𝜃𝑄 + 𝑐1,    𝑐1 = 𝑀 +
1

𝐾
,    𝑑1 = 1 − 𝜃. 

To find Laplace inverse of Eq. (30), first we write it in the fol-
lowing form: 

𝑢̅(𝜑, 𝜂) = 𝜔̅(𝜑, 𝜂) + 𝐺𝑟Ψ̅(𝜑, 𝜂)[𝑇̅(𝜑, 𝜂) − 𝜔̅(𝜑, 𝜂)]     (31) 

and 

𝜔̅(𝜑, 𝜂) = 𝜔1(𝜑, 𝜂) − 𝑒−𝜂𝜔1(𝜑, 𝜂).                                   (32) 

After the application of Laplace inverse operator, Eq. (32) is 
turn out again in the time variable as 

𝜔(𝜑, 𝑡) = 𝜔1(𝜑, 𝑡) − 𝜔1(𝜑, 𝑡)𝑃(𝑡 − 1),                           (33) 

where 

𝜔1(𝜑, 𝑡) = 𝐿−1{𝜔1(𝜑, 𝜂)} = 𝐿−1 {
1

𝜂2 𝑒
−𝜑√(

𝜂

𝜂𝛼+1+℘
+𝑐1)

},  

= 𝐿−1 {
1

𝜂2
∑ ∑

(−𝜑)𝜒(𝑐1)
𝜒
2−𝑛

Γ(
𝜒

2
+1)(𝜂)𝑛

𝜒!𝑛!Γ(
𝜒

2
−𝑛+1)(𝜂𝛼+1+℘)𝑛

∞
𝑛=0

∞
𝜒=0 },  

= ∑ ∑
(−𝜑)𝜒(𝑐1)

𝜒
2−𝑛

Γ(
𝜒

2
+1)

𝜒!𝑛!Γ(
𝜒

2
−𝑛+1)

∞
𝑛=0

∞
𝜒=0 𝑡𝑛𝛼+1𝐸𝛼+1,𝑛𝛼+2

𝑛 (−℘𝑡𝛼+1),  

Ψ(𝜑, 𝑡) = 𝐿−1{Ψ̅(𝜑, 𝜂)} = 𝐿−1 {
1

𝑎1+
𝑑1𝜂

𝜂𝛼+1+℘

},  

            = 𝐿−1 {∑
(−1)𝑚(𝑑1)𝑚(𝜂)𝑚

(𝑎1)𝑚+1(𝜂𝛼+1+℘)𝑚
∞
𝑚=0 },  

= ∑
(−1)𝑚(𝑑1)𝑚

(𝑎1)𝑚+1
∞
𝑚=0 𝑡𝑚𝛼−1𝐸𝛼+1,𝑚𝛼

𝑚 (−℘𝑡𝛼+1).  

The inverse Laplace of Eq. (31), the required velocity field so-
lution, is finally written as 

𝑢(𝜑, 𝑡) = 𝜔(𝜑, 𝑡) + 𝐺𝑟Ψ(𝜑, 𝑡) ∗ [𝑇(𝜑, 𝑡) − 𝜔(𝜑, 𝑡)].    (34) 

4.3.2 Solution in the absence of magnetic and porosity 
parameter 

In this scenario, let us assume that 𝑀 = 0 and 
1

𝐾
= 0 in the 

velocity equation (25), resulting in the following simplified form: 

𝑢̅(𝜑, 𝜂) = (
1−𝑒−𝜂

𝜂2 ) 𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
)

+
𝐺𝑟(1−𝑒−𝜂)

𝜂2(𝑏𝜃𝑄+
𝑑𝜂

𝜂𝛼+1+℘
)

[𝑒
−𝜑√𝜃(

𝜂

𝜂𝛼+1+℘
−𝑄)

− 𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
)
] .

(35) 

To find Laplace inverse of Eq. (35), first we write it in the fol-
lowing form: 

𝑢̅(𝜑, 𝜂) = Υ̅(𝜑, 𝜂)

+𝐺𝑟ϖ̅(𝜑, 𝜂)[𝑇̅(𝜑, 𝜂) − Υ̅(𝜑, 𝜂)]
                         (36) 

and 

Υ̅(𝜑, 𝜂) = Υ̅1(𝜑, 𝜂) − 𝑒−𝜂Υ̅1(𝜑, 𝜂).                                 (37) 

After the application of Laplace inverse operator, Eq. (37) is 
turn out again in the time variable as 

Υ(𝜑, 𝑡) = Υ1(𝜑, 𝑡) − Υ1(𝜑, 𝑡)𝑃(𝑡 − 1),                            (38) 

where 

Υ1(𝜑, 𝑡) = 𝐿−1{Υ1(𝜑, 𝜂)} = 𝐿−1 {
1

𝜂2 𝑒
−𝜑√

1

𝑏
(

𝜂

𝜂𝛼+1+℘
)
} ,

= 𝐿−1 {
1

𝜂2
∑ ∑

(−𝜑)𝜒Γ(
𝜒

2
+1)(𝜂)𝑛

𝜒!𝑛!(𝑏)
𝜒
2 Γ(

𝜒

2
−𝑛+1)(𝜂𝛼+1+℘)𝑛

∞
𝑛=0

∞
𝜒=0 } ,

= ∑ ∑
(−𝜑)𝜒Γ(

𝜒

2
+1)

𝜒!𝑛!(𝑏)
𝜒
2 Γ(

𝜒

2
−𝑛+1)

∞
𝑛=0

∞
𝜒=0 𝑡𝑛𝛼+1𝐸𝛼+1,𝑛𝛼+2

𝑛 (−℘𝑡𝛼+1),

  

ϖ(𝜑, 𝑡) = 𝐿−1{ϖ̅(𝜑, 𝜂)} = 𝐿−1 {
1

𝑏𝜃𝑄+
𝑑𝜂

𝜂𝛼+1+℘

},  

            = 𝐿−1 {∑
(−1)𝑚(𝑑)𝑚(𝜂)𝑚

(𝑏𝜃𝑄)𝑚+1(𝜂𝛼+1+℘)𝑚
∞
𝑚=0 }, 



DOI 10.2478/ama-2024-0011              acta mechanica et automatica, vol.18 no.1 (2024) 

89 

            = ∑
(−1)𝑚(𝑑)𝑚

(𝑏𝜃𝑄)𝑚+1
∞
𝑚=0 𝑡𝑚𝛼−1𝐸𝛼+1,𝑚𝛼

𝑚 (−℘𝑡𝛼+1).  

The inverse Laplace of Eq. (36), the required velocity field so-
lution, is finally written as 

𝑢(𝜑, 𝑡) = Υ(𝜑, 𝑡) + 𝐺𝑟ϖ(𝜑, 𝑡) ∗ [𝑇(𝜑, 𝑡) − Υ(𝜑, 𝑡)]. (39) 

5. RESULTS AND DISCUSSION 

This study focuses on analysing the heat transfer in the natu-
ral convective flow of Casson fluid under the influence of MHD. 
The aim is to derive analytical solutions using the non-integer-
order derivative YAC model. The fluid flow occurs along the 𝜑-
axis, and a dimensionless system of equations representing the 
phenomenon is solved using integral LT. The results obtained are 
presented in series form and also expressed in terms of special 
functions. To visually depict the effects of various physical param-
eters, such as the memory parameter (𝛼), Prandtl number (𝑃𝑟), 

Casson parameter (𝛽), heat absorption parameter (𝑄), thermal 

Grashof number (𝐺𝑟), magnetic parameter (𝑀), chemical reaction 
rate (𝑁𝑟) and porosity parameter (𝐾), graphical illustrations are 
utilized. Figs. 2–11 portray the velocity and temperature distribu-
tion of the Casson fluid under different parameter values using 
graphical software. 

 
Fig. 2. Influence of Casson fluid temperature against φ  

for multiple values of α 

Fig. 2 illustrates the influence of the memory parameter on the 

temperature profile. As the value of 𝛼 increases, the boundary 
layer thickens, leading to a decrease in temperature. The validity 
of the obtained result can be easily confirmed by considering the 
limit as 𝛼 → 1. The Prandtl number is a dimensionless quantity 
that characterizes the relative importance of momentum diffusion 
to thermal diffusion in a fluid. It provides valuable information 
about the rate of heat transfer and the thermal boundary layer in 
various fluid flow systems. The prevalence of mass diffusivity in 
fluid flow leads to a decrease in the thermal boundary layer, con-
sequently causing a reduction in temperature. These effects, as 
demonstrated in Fig. 3, can be attributed to the influence of the 

Prandtl number 𝑃𝑟 . Fig. 4 depicts the influence of the radiation 
parameter 𝑁𝑟 on the temperature distribution of Casson fluid for 
different values. The graphs reveal that the energy profile in-

creases as the 𝑁𝑟 values increase. Physically, as the heat flux 
changes, it leads to a reduction in 𝑘1 along the plate in the normal 
direction. This indicates that a greater amount of heat radiation is 
absorbed by the fluid, resulting in an elevated temperature profile. 

 
Fig. 3. Representation of Casson fluid temperature against φ  

for multiple values of Pr 

 
Fig. 4. Representation of Casson fluid temperature against 𝜑  

for multiple values of Nr 

 
Fig. 5. Representation of Casson fluid temperature against φ  

for multiple values of Q 

Fig. 5 illustrates the correlation between the quantity of heat, 

whether extracted (𝑄 < 0) or supplied (𝑄 > 0), and tempera-
ture. It can be observed that the energy profile increases as the 
values of 𝑄 rise, indicating the considerable impact of heat extrac-
tion or generation in cooling and heating procedures. Further-

more, Fig. 6 exhibits the influence of parameter 𝛼 on the fluid 
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flow. The descending velocity curves provide a clear representa-

tion of how varying values of 𝛼 impact the flow behaviour. Fig. 7 
describes the influence of the Casson fluid parameter, 𝛽, on the 

velocity graphs of the Casson fluid in relation to 𝜑. Various values 

of 𝛽 were selected to examine the effects on different fluidic 
parameters.  

 

Fig. 6. Velocity representation for multiple values of 𝛼 

 

Fig. 7. Velocity representation for multiple values of 𝛽 

Fig. 8 depicts the effect of the Prandtl number, denoted as 𝑃𝑟 , 
on the velocity of Casson fluid as a function of 𝜑, while consider-

ing different values of 𝑃𝑟  at four distinct fractional parameter val-

ues of𝛼. It is noteworthy that the Prandtl number plays a signifi-
cant role in determining the behaviour of the Casson fluid velocity 

profile within the boundary layer. As the values of 𝑃𝑟  vary, notice-
able changes in the velocity distribution within the boundary layer 
are observed as decay in the boundary layer of velocity noticed 

corresponding to rise in the distinct values of 𝑃𝑟 . To provide a 
more comprehensive understanding of the impact of the Grashof 
number 𝐺𝑟 , Fig. 9 has been plotted. The Grashof number repre-

sents the ratio between buoyancy force and viscous force. As 𝐺𝑟  
increases, indicating a higher fraction of buoyancy force com-
pared to viscous force, the fluid velocity experiences a significant 
boost. This acceleration in fluid velocity is a direct result of the 

increasing value of 𝐺𝑟 .  
Fig. 10 elucidates the influence of the permeability parameter 

𝐾 on the velocity profiles of the Casson fluid with respect to 𝜑. 

Different values of 𝐾 were chosen to examine the impact of small 
and large 𝛼 values. An increase in the porosity of the medium 
weakens the resistive force, leading to an enhancement in the 
flow regime due to momentum development. The graph clearly 
depicts an elevation in the velocity profile as 𝐾 values increase 
under ramped conditions.  

 

Fig. 8. Velocity representation for multiple values of 𝑃𝑟  

 

Fig. 9. Velocity representation for multiple values of 𝐺𝑟  

 

Fig. 10. Velocity representation for multiple values of 𝐾 

Fig. 11 interprets the influence of the magnetic number 𝑀 on 

the momentum profile concerning 𝜑, by assigning different values 

of 𝑀 in the velocity equation. This visualization aims to demon-
strate the physical behaviour of the velocity of Casson fluid corre-
sponding to various fractional parameter values. The results show 
that both the magnitude of the boundary layer thickness and the 
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velocity decrease when a strong magnetic field is applied. Conse-
quently, this observation indicates that the fluid experiences a 
slow down as the magnetic number increases, as the dragging 
forces dominate over the flow-supporting forces. Ultimately, the 
velocity contour diminishes as the magnetic number values in-
crease. 

 
Fig. 11. Velocity representation for multiple values of 𝑀 

6. CONCLUSION 

    This research article aims to explore the behaviour of MHD 
natural convective flow of Casson fluid, a type of non-Newtonian 
fluid, by obtaining analytical solutions using the non-integer-order 
derivative known as YAC. The study focuses on the fluid flow in 
the vicinity of an infinitely vertical plate. To analyse the system of 
equations governing the flow, the LT technique is employed. This 
mathematical tool helps in transforming the equations into a dif-
ferent domain, where they can be solved more effectively. By 
applying the LT to the fractional system of equations, the re-
searchers are able to derive solutions in a series form, which 
provides a mathematical representation of the behaviour of the 
Casson fluid under MHD natural convective flow conditions. Fur-
thermore, the obtained solutions are presented using special 
functions, which are mathematical functions that have specific 
properties and are commonly used to describe complex phenom-
ena. The use of special functions allows for a more concise and 
precise representation of the results. The researchers analyse the 
graphical behaviour of the solutions to gain insights into the char-
acteristics of the Casson fluid flow. These graphical representa-
tions provide valuable information about various aspects of the 
flow, such as velocity profiles and heat distribution. By observing 
the trends and patterns in the graphs, important key points can be 
identified and expressed as follows: 

 With an increase in the memory parameter 𝛼, the velocity 

field and temperature experience a gradual decrease. In other 

words, higher values of 𝛼 result in lower velocities and tem-

peratures. 

 When the Prandtl number 𝑃𝑟  increases, it indicates a higher 
ratio of momentum diffusivity to thermal diffusivity in a fluid. In 
practical terms, this means that the fluid is more efficient at 
transferring momentum than heat. As a result, both the veloci-
ty field and temperature exhibit a decreasing trend. 

 As the values of the parameters 𝑁𝑟 and 𝑄 increase, the effect 
on the temperature profile becomes more pronounced.  

A higher 𝑁𝑟 implies a greater influence of radiation, leading to 
elevated temperatures. Similarly, an increase in the heat injec-
tion/suction parameter 𝑄 amplifies the impact on the tempera-
ture distribution, resulting in higher temperatures. 

 Elevated values of the parameters 𝐺𝑟  and 𝐾 have a positive 
effect on the velocity of the Casson fluid, resulting in an in-
crease in its flow speed. The larger the values of 𝐺𝑟  and 𝐾, 
the greater the enhancement observed in the velocity of the 
Casson fluid. 

 When the magnetic number 𝑀 increases, the impact of mag-
netic forces on the fluid becomes more significant. This in-
creased influence results in a reduction in the fluid velocity. 
The magnetic forces act as a resistance, impeding the fluid 
flow and causing a decrease in velocity as the magnetic num-
ber increases. 
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