Czasopismo
2014
|
Vol. 62, iss. 4
|
403–-421
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The stiffness and the natural frequencies of a rectangular and a V-shaped micro-cantilever beams used in Atomic Force Microscope (AFM) were analysed using the Finite Element (FE) method. A determinate analysis in the material and dimensional parameters was first carried out to compare with published analytical and experimental results. Uncertainties in the beams’ parameters such as the material properties and dimensions due to the fabrication process were then modelled using a statistic FE analysis. It is found that for the rectangular micro-beam, a ±5% change in the value of the parameters could result in 3 to 8-folds (up to more than 45%) errors in the stiffness or the 1st natural frequency of the cantilever. Such big uncertainties need to be considered in the design and calibration of AFM to ensure the measurement accuracy at the micron and nano scales. In addition, a sensitivity analysis was carried out for the influence of the studied parameters. The finding provides useful guidelines on the design of micro-cantilevers used in the AFM technology.
Czasopismo
Rocznik
Tom
Strony
403–-421
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- School of Engineering and Design, Brunel University UK , bin.wang@brunel.ac.uk
autor
- School of Mechanical Engineering, Southwest Jiaotong University P. R. China , wuxiaobs@163.com
autor
- National Engineering School of Metz ENIM Laboratory of Mechanics, Biomechanics, Polymers and Structures – LaBPS, EA 4632 1 route d’Ars Laquenexy, CS 65820 57078 METZ Cedex 3, France , rusinek@enim.fr
autor
- School of Engineering and Design, Brunel University UK
Bibliografia
- 1. Binnig G., Quate C.F., Gerber C., Atomic force microscope, Physical Review Letter, 56, 9, 930–933, 1986.
- 2. Prater C.B., Butt H.J., Hansma P.K.,Atomic force microscopy, Nature, 345, 6, 839– 840, 1990.
- 3. Nader J., Karthik L., A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences, Mechatronics, 14, 8, 907–945, 2004.
- 4. Tortonese M., Cantilevers and tips for atomic force microscopy, Park Scientific Instruments, 16, 2, 28–33, 1997.
- 5. Senden T.J., Ducker W.A., Experimental determination of stiffnesss in atomic force microscopy, Langmuir, 10, 4, 1003–1004, 1994.
- 6. Gibson C.T., Watson G.S., Myhra S., Determination of the stiffnesss of probes for force microscopy/spectroscopy, Nanotechnology, 7, 9, 259–262, 1996.
- 7. Cleveland J.P., Manne S., Bocek D., Hansma P.K., A nondestructive method for determining the stiffness of cantilevers for scanning force microscopy, Review of Science Instruments, 64, 2, 403–405, 1993.
- 8. Gibson C.T., Private communication, Department of Physics and Astronomy, University of Leeds.
- 9. Sader J.E., Larson I., Mulvaney P., White L.R., Method for the calibration of atomic force microscope cantilevers, Review of Science Instruments, 66, 7, 3789–3798, 1995.
- 10. Gibson C.T., Smith D.A., Roberts C.J., Calibration of silicon atomic force microscope cantilevers, Nanotechnology, 16, 2, 234–238, 2005.
- 11. Albrecht T.R., Akamine S., Carver T.E., Quate C.F., Microfabrication of cantilever styli for the atomic force microscope, Journal of Vacuum Science & Technology A, 8, 4, 3386–3396, 1990.
- 12. Butt H.J. et al., Scan speed limit in atomic force microscopy, Journal of Microscopy, 169, 1, 75–84, 1993.
- 13. Clifford C.A., Seah M.P., The determination of atomic force microscope cantilever stiffnesss via dimensional methods for nanomechanical analysis, Nanotechnology, 16, 9, 1666–1880, 2005.
- 14. Sader J.E., Parallel beam approximation for V-shaped atomic force microscope cantilevers, Review of Science Instruments, 66, 9, 4583–4587, 1995.
- 15. Cook R.D., Finite Element Modelling for Stress Analysis, John Wiley & Sons Inc Press, 1995, ISBN 0-471-10774-3.
- 16. Olympus Optical Corporation, Tokyo, Japan.
- 17. Morris V.J., Kirby A.R., Gunning A.P., Atomic Force Microscopy for Biologists, Imperial College Press, 1999, ISBN 1-86094-199-0.
- 18. Chen G.Y., Warmack R.J., Thundat T., Allison D.P., Huang A., Resonance response of scanning force microscope cantilevers, Review of Scientific Instruments, 65, 8, 2532–2537, 1994.
- 19. Ashby M.F., Materials selection in mechanical design, Cambridge University Press, 2005, ISBN 0-7506-4357-9.
- 20. Barbato M., Conte J.P., Finite element response sensitivity analysis: a comparison between force-based and displacement-based frame element models, Computer Methods in Applied Mechanics and Engineering, 194, 8, 1479–1512, 2005.
- 21. Wang S., Sun Y., Gallagher R.H., Sensitivity analysis in shape optimization of contimuum structures, Computer & Structures, 20, 5, 855–867, 1985.
- 22. Mottershead J.E., Link M., Friswell M.I., The sensitivity method in finite element model updating: A tutorial, Mechanical Systems and Signal Processing, 25, 10, 2275–2296, 2011.
- 23. Pollock G.D., Noor A.K., Sensitivity analysis of the contact/impact response of composite structures, Computers & Structures, 61, 10, 251–269, 1996.
- 24. Pajot J.M., Maute K., Analytical sensitivity analysis of geometrically nonlinear structures based on the co-rotational finite element method, Finite Elements in Analysis and Design, 42, 6, 900–913, 2006.
- 25. ReedK.L., Rose K.A., Whitmore R.C., Latin hypercube analysis of parameter sensitivity in a large model of outdoor recreation demand, Ecological Modelling, 24, 9, 159–169, 1984.
- 26. Olsson A., Sandberg G., Dahlblom O., On Latin hypercube sampling for structural reliability analysis, Structural Safety, 25, 1 47–68, 2003.
- 27. Liu W., Design of Experiments, Tsinghua University Press, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-59d67e01-c942-42a9-8620-e154085bc369