Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | Vol. 65, no. 5 | 945--955
Tytuł artykułu

Theoretical derivation of basic mechanical property required for triggering mine-pillar rockburst

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rockburst is divided into two types, one is strain-type resulting from rock damage and another is sliding-type resulting from fault slip events. Triggering mine pillar rockburst mainly consists of two steps: the occurrence of shear-band and the application of disturbance. In this paper, mechanical model of mine pillar subjected to uniaxial compression is established. By simplifying the complete stress-strain curve and the crack propagation behaviour, based on the derived energy expressions corresponding to different crack propagation stages, the type of rockburst that the disturbance-induced pillar instability belongs to is defined. Next, by establishing the model of mine pillar with one inclined shear-band and by simplifying the stress evolution on the band, based on the necessary physical characteristics for triggering dynamic events, the basic mechanical property of mine pillar required for triggering instability is derived. It shows that the post-peak modulus greater than or equal to the pre-peak modulus is the basic mechanical property required for triggering mine pillar instability. Finally, by conducting laboratory experiments, the proposed model is verified. The requirement that the post-peak modulus is greater than or equal to the pre-peak modulus may be the rea-son why triggered mine pillar rockburst is not often observed.
Wydawca

Czasopismo
Rocznik
Strony
945--955
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, China, wuhanhp14315@163.com
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, China
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, China
Bibliografia
  • 1. Atkinson BK (1992) Fracture mechanics of rock. Seismological Press, Beijing
  • 2. Cai M (2010) Practical estimates of tensile strength and Hoek-Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng 43:167–184
  • 3. Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41:833–847
  • 4. Cook NGW (1965) A note on rockburst considered as a problem of stability. J S Afr Inst Min Metall 65:437–445
  • 5. Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16(2):155–169
  • 6. Gomberg J, Reasenberg PA et al (2001) Earthquake triggering by seismic waves following the Landers and Hector Mine earthquake. Nature 411:462–466
  • 7. Hill DP, Reasenberg PA et al (1993) Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake. Science 260:1617–1623
  • 8. Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock-a review. J Rock Mech Geotech Eng 6:287–300
  • 9. Horii H, Nemat-Nasser S (1985) Compression-induced microcrack growth in brittle solids: axial splitting and shear failure. J Geophys Res 90:3105–3125
  • 10. Jiang YD, Pan YS, Jiang FX, Dou LM, Ju Y (2014) State of the art review on mechanism and prevention of coal bumps in china. J China Coal Soc 39(2):205–213
  • 11. Johnson PA, Jia XP (2005) Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437:871–874
  • 12. Kachanov LM (1986) Introduction to the continuum damage mechanics. Springer, Dordrecht
  • 13. Klein E, Reuschle T (2004) A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. Int J Rock Mech Min Sci 41:975–986
  • 14. Landau LD, Lifshitz EM (2013) Fluid mechanics, Volume 6 of Course of Theoretical Physics, 5th edn. Higher Education Press, Beijing
  • 15. Lastakowski H, Geminard JC, Vidal V (2015) Granular friction: triggering large events with small vibrations. Sci Rep 5:1–5
  • 16. Li JT, Cao P (2006) Analysis of pillar stability in hard rock mass by longitudinal splitting based on catastrophe theory. J Cent South Univ (Sci Tech) 37(2):371–375
  • 17. Li T, Cai MF, Cai M (2007a) A review of mining-induced seismicity in China. Int J Rock Mech Min Sci 44:1149–1171
  • 18. Li XB, Li DY, Guo L, Ye ZY (2007b) Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance. Chin J Rock Mech Eng 26(5):922–928
  • 19. Linkov AV (1992) Dynamic phenomena in mines and the problem of stability. University of Minnesota, Minnesota
  • 20. Lu HJ, Liang P, Gan DQ, Sun GP (2015) Stress evolution and surface subsidence laws of hard rock pillars under dynamic disturbance. Metal Mine 7:6–10
  • 21. Qian QH (2014) Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump. Rock Soil Mech 35(1):1–6
  • 22. Ryder JA (1988) Excess shear stress in the assessment of geologically hazardous situations. J S Afr Inst Min Metall 88:27–39
  • 23. Salamon MDG (1993) Keynote address: Some applications of geomechanical modelling in rockburst and related research//Rockburst and seismicity in mines. A.A. Balkema, Rotterdam
  • 24. Stacey TR (2013) Dynamic rock failure and its containment. In: Proceedings of the first international conference on rock dynamic and applications. CRC Press, Lausanne, p 57–70
  • 25. Tan TK (1987) Rockburst, case records, theory and control. Chin J Rock Mech Eng 6(1):1–18
  • 26. Tarasov B, Potvin Y (2013) Universal criteria for rock brittleness estimation under triaxial compression. Int J Rock Mech Min Sci 59:57–69
  • 27. Wang LG, Miao XX (2006) Study of mechanism of destabilization of the mine pillar based on a cusp catastrophic model. J Min Saf Eng 23(2):137–140
  • 28. Wang XB, Pan YS, Ren WJ (2003) Instability criterion of shear failure for rock specimen based on gradient-dependent plasticity. Chin J Rock Mech Eng 22(5):747–750
  • 29. Wang SY, Lam KC, Au SK, Tang CA, Zhu WC, Yang TH (2006) Analytical and numerical study on the pillar rockburst mechanism. Rock Mech Rock Eng 39(5):445–467
  • 30. Wang MY, Li J, Li KR (2015) A nonlinear mechanical energy theory in deep rock mass engineering and its application. Chin J Rock Mech Eng 34(4):659–667
  • 31. Wang MY, Li J, Ma LJ, Huang HX (2016) Study on the characteristic energy factor of the deep rock mass under weak disturbance. Rock Mech Rock Eng 49(8):3165–3173
  • 32. Xia KW, Rosakis AJ, Kanamori H (2004) Laboratory earthquake: the sub-Rayleigh-to-supershear rupture transition. Science 303:1859–1861
  • 33. Yang YJ, Xing LY, Zhang YQ, Ma DP (2015) Analysis of long-term stability of gypsum pillars based on creep tests. Chn J Rock Mech Eng 34(10):2106–2113
  • 34. Zhou XP, Shou YD, Qian QH, Yu MH (2014) Three-dimensional nonlinear strength criterion for rock-like materials based on the micromechanical method. Int J Rock Mech Min Sci 72:54–60
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5986f266-c046-46d4-9c21-1a7fc88dfd82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.