Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 31, nr 1 | 85--102
Tytuł artykułu

Determination of parameters generating the reference pressure in the primary level dynamic pressure measurement system based on the drop weight method

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For some industries such as automotive, defence, aerospace, pharmaceutical manufacturing, dynamic pressure measurement is an important requirement. In a primary level dynamic pressure measurement system with a drop weight method, the dynamic pressure value is calculated using parameters such as the effective area value depending on the piston cylinder unit, the maximum acceleration value measured by a laser interferometer. On the other hand, the type of liquid used in the measuring head is another important factor affecting repeatability and providing ease of measurement. In this study, a new measurement head, piston and cylinders were designed, manufactured and the Taguchi method was used to accurately determine some parameters affecting the measurements in a dynamic primary pressure measurement system operating with the drop weight method. In the studies carried out, four pistons, four cylinders, four sampling frequency values and two liquid types were considered. By using the Taguchi method, the optimum parameters of the dynamic pressure measurement system with drop weight method were determined with only sixteen experiments instead of one hundred and twenty-eight.
Wydawca

Rocznik
Strony
85--102
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • TÜBİTAK National Metrology Institute, TÜBİTAK Gebze Yerleşkesi P.K.54, 41470 Gebze, Kocaeli, Türkiye, yilmaz.recep@tubitak.gov.tr
  • Necmettin Erbakan University, Faculty of Engineering, Institute of Natural and Applied Science, Yeni Meram Boulevard Kasım Halife Street 11, 42090 Meram, Konya, Türkiye
  • TÜBİTAK National Metrology Institute, TÜBİTAK Gebze Yerleşkesi P.K.54, 41470 Gebze, Kocaeli, Türkiye
  • TÜBİTAK National Metrology Institute, TÜBİTAK Gebze Yerleşkesi P.K.54, 41470 Gebze, Kocaeli, Türkiye
Bibliografia
  • [1] Bilgiç, E., & Durgut, Y. (2015). Effects of waveform model on sensitivity values of transducers used in mechanical dynamic measurements. Acta Physica Polonica A, 128(2B), B-271. https://doi.org/10.12693/aphyspola.128.b-267
  • [2] Durgut, Y., Bağcı, E., Akşahin, E., & İnce, A. T. (2017). An investigation on characterization of dynamic pressure transducers using material impact test machine. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(9), 3645-3655. https://doi.org/10.1007/s40430-017-0763-3
  • [3] Bean, V. E. (1994). Dynamic Pressure Metrology. Metrologia, 30(6), 737-741. https://doi.org/10.1088/0026-1394/30/6/037
  • [4] Hjelmgren, J. (2002). Dynamic Measurement of Pressure - A Literature Survey. SP Measurement Technology Report, SP Swedish National Testing and Research Institute.
  • [5] Bartoli, C., Beug, M. F., Bruns, T., Elster, C., Esward, T. J., Klaus, L., Knott, A., Kobusch, M., Saxholm, S., & Schlegel, C. (2012). Traceable dynamic measurement of mechanical quantities: objectives and first results of this European project. International Journal of Metrology and Quality Engineering, 3(3), 127-135. https://doi.org/10.1051/ijmqe/2012020
  • [6] Choi, I., Yang, I., & Woo, S. (2013). High dynamic pressure standard based on the density change of the step pressure generator. Metrologia, 50(6), 631-636. https://doi.org/10.1088/0026-1394/50/6/631
  • [7] Lally, J. F. (1991, April). Dynamic step-pressure calibration. In Proceedings from the NIST workshop on the measurement of transient pressure and temperature, Gaithersburg, Maryland, USA (pp. 104-119).
  • [8] Salminen, J., Högström, R., Saxholm, S., Lakka, A., Riski, K., & Heinonen, M. (2018). Development of a primary standard for dynamic pressure based on drop weight method covering a range of 10 MPa-400 MPa. Metrologia, 55(2), S52-S59. https://doi.org/10.1088/1681-7575/aaa847
  • [9] Slanina, O., Quabis, S., Derksen, S., Herbst, J., & Wynands, R. (2020). Comparing the adiabatic and isothermal pressure dependence of the index of refraction in a drop-weight apparatus. Appl. Phys. B 126, 175, https://doi.org/10.1007/s00340-020-07519-z
  • [10] Salminen, J., Saxholm, S., Hämäläinen, J., & Högström, R. (2020). Advances in traceable calibration of cylinder pressure transducers. Metrologia, 57(4), 045006. https://doi.org/10.1088/1681-7575/ab8fb9
  • [11] Karna, S. K., & Sahai, R. (2012). An overview on Taguchi method. International Journal of Engineering and Mathematical Sciences, 1(1), 11-18.
  • [12] Taguchi, G. (1993). Robust technology development. Mechanical Engineering-CIME, 115(3), 60-63.
  • [13] Molinar, G. F., Rebaglia, B. I., Sacconi, A., Legras, J. C., Vailleau, G., Schmidt, J. W., Stoup, J. R., Flack, D. R., Sabuga, W., & Jusko, O. (1999). CCM key comparison in the pressure range 0.05 MPa to 1 MPa (gas medium, gauge mode). Phase A1: Dimensional measurements and calculation of effective area. Metrologia, 36(6), 657-662. https://doi.org/10.1088/0026-1394/36/6/34
  • [14] Molinar, G. F., Bergoglio, M., Sabuga, W., Otal, P., Ayyildiz, G., Verbeek, J., & Farár, P. (2005). Calculation of effective area A0 for six piston-cylinder assemblies of pressure balances. Results of the EUROMET Project 740. Metrologia, 42(6), S197-S201. https://doi.org/10.1088/0026-1394/42/6/s11
  • [15] Dadson, R. S., Lewis, S. L., & Peggs, G. N. (1982). The Pressure Balance: Theory and Practice. Her Majesty’s Stationery Office.
  • [16] Elkarous, L., Robbe, C., Pirlot, M., & Golinval, J. (2016). Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement. International Journal of Metrology and Quality Engineering, 7(2), 201. https://doi.org/10.1051/ijmqe/2016004
  • [17] Ghani, J. A., Choudhury, I. A., & Hassan, H. (2004). Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology, 145(1), 84-92. https://doi.org/10.1016/s0924-0136(03)00865-3
  • [18] Minitab, LLC. Methods and formulas for analyze Taguchi design. Retrieved January 31, 2024. https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/methods-and-formulas/methods-and-formulas/
  • [19] Phadke, M. S. (1995). Quality Engineering Using Robust Design. Prentice Hall PTR.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-597e5246-482d-475f-842c-acd69569b727
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.