Czasopismo
2022
|
No. 64 (4)
|
651--664
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Dispersion of dissolved contaminants introduced at various locations within and just outside the surf zone are investigated. It is shown that the Longuet-Higgins model of surf-zone hydrodynamics adequately describes the distribution of longshore currents measured at the laboratory scale. Relations are derived between the longitudinal and transverse dispersion coefficients and the influencing parameters. The maximum longitudinal dispersion coefficients are associated with tracer releases near the breaker line, and longitudinal dispersion coefficients generally increase with travel time for distances up to at least 10 surf-zone widths. In contrast, transverse dispersion coefficients remain relatively constant for increasing travel time. The longitudinal and transverse dispersion coefficients can be significantly influenced by assumed values of local turbulent diffusion and cross-shore shear dispersion.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
651--664
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, USA, dchin@miami.edu
Bibliografia
- 1. Battjes, J., 1974. Surf similarity. In: Proceedings of the Fourteenth International Conference on Coastal Engineering. American Society of Civil Engineers, New York, 466-480.
- 2. Bowen, A., 1969. The generation of longshore currents on a plane beach. J. Mar. Res. 27, 206-215.
- 3. Bowen, A., Inman, D, 1974. Nearshore mixing due to waves and wave-induced currents. Rapports et Proces-verbaux des Reunions. Conseil International pour l ́Exploration de la Mer 167, 6-12.
- 4. Brebner, A., Kamphuis, J, 1963. Model tests n the relationship between deep-water wave characteristics and longshore currents. Queens University, Kingston, Ontario C.E. Research Report No. 31.
- 5. Clarke, L., Ackerman, D., Largier, J., 2007. Dye dispersion in the surf zone: Measurements and simple models. Cont. Shelf Res. 27, 650-669. https://doi.org/10.1016/j.csr.2006.10.010
- 6. Dally, W., 1990. Random breaking waves: a closed-form solution for planar beaches. Coastal Eng. 14, 233-263.
- 7. Galvin Jr., C., Eagleson, P., 1964. Experimental Study of Longshore Currents on a Plane Beach. Hydrodynamics Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Tech. Rep. No. 63.
- 8. Grant, S., Kim, J., Jones, B., Jenkins, S., Wasyl, J., Cudaback, C., 2005. Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J. Geophys. Res. 110. https://doi.org/10.1029/2004JC002401
- 9. Harris, T., Jordaan, J., McMurray, W., Verwey, C., Anderson, F.,1963. Mixing in the Surf Zone. Int. J. Air Water Pollut. 7, 649-667.
- 10. Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D., Enke, K., Ewing, J., Gienapp, H., Hasselmann, D., Kruseman, P., Meerburg, A., Muller, P., Olbers, D., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Erganzung zur Deut. Hydrogr. Z., Reihe A 8 (12), 1-95.
- 11. Inman, D., Tait, R., Nordstrom, C., 1971. Mixing in the surf zone. J. Geophys. Res. 76 (15), 3493-3514.
- 12. Koh, R., 1988. Shoreline Impact from Ocean Waste Discharges. J. Hydraulic Eng. 114 (4), 361-376.
- 13. Komar, P., 1998. Beach Processes and Sedimentation, 2nd edn., Prentice Hall, Upper Saddle River, New Jersey, 544 pp.
- 14. Kweon, H.-M., Goda, Y., 1997. A Parametric Model for Random Wave Deformation by Breaking on Arbitrary Beach Profiles. In: Proceedings, 25th International Conference on Coastal Engineering, September 2—6, 1996. American Society of Civil Engineers, Orlando, Florida, 261-274.
- 15. Larson, M., Kraus, N., 1991. Numerical Model of Longshore Current for Bar and Trough Beaches. J. Waterw. Port C. 17 (4), 326-347.
- 16. Longuet-Higgins, M., 1970a. Longshore Currents Generated by Obliquely Incident Sea Waves, 1. J. Geophys. Res. 75 (33),6778-6789.
- 17. Longuet-Higgins, M., 1970b. Longshore Currents Generated by Obliquely Incident Sea Waves, 2. J. Geophys. Res. 75 (33), 6790-6801.
- 18. Novelli, G., Guigand, C., Boufadel, M., Ozgökmen, T., 2020. On the transport and landfall of marine oil spills, laboratory and field observations. Mar. Pollut. Bull. 150, 110805. https://doi.org/10.1016/j.marpolbul.2019.110805
- 19. Pearson, J.M., Guymer, I., West, J.R., Coates, L.E., 2009. Solute Mixing in the Surf Zone. J. Waterw. Port C. 135 (4), 127-134. https://doi.org/10.1061/ASCE0733-950X2009135:4127
- 20. Putnam, J., Munk, W., Traylor, M., 1949. The prediction of long-shore currents. EOS T.-Am. Geophys. Un. 30, 337-345.
- 21. Rienecker, M., Fenton, J., 1981. A Fourier approximation method for steady water waves. J. Fluid Mech. 104, 119-137.
- 22. Ruessink, B., Miles, J., Feddersen, F., Guza, R., Elgar, S., 2001. Modeling the alongshore current on barred beaches. J. Geophys. Res. 106, 22451-22463.
- 23. Saville, T., 1950. Model study of sand transport along an infinitely long straight beach. EOS T.-Am. Geophys. Un. 31, 555-565.
- 24. Shuto, N., 1974. Nonlinear long waves in a channel of varied section. Coast. Eng. Jpn. 17, 1-12.
- 25. Spydell, M., Feddersen, F., Guza, R., Schmidt, W., 2007. Observing surf-zone dispersion with drifters. J. Phys. Oceanogr. 37, 2920-2939. https://doi.org/10.1175/2007JPO3580.1
- 26. Sun, T., Tao, J., 2003. Numerical modeling and experimental verification of pollutant transport under waves in the nearshore zone. Acta Oceanol. Sin. 25 (3), 104-112.
- 27. Sun, T., Tao, J., 2006. Numerical simulation of pollutant transport acted by wave for a shallow water sea bay. Int. J. Numer. Method. Fluid. 51, 469-487.
- 28. Svendsen, I.A., Putrevu, U, 1994. Nearshore mixing and dispersion. Proc. R. Soc. Lond. A 445, 561-576. https://doi.org/10.1098/rspa.1994.0078
- 29. Takewaka, S., Misaki, S., Nakamura, T., 2003. Dye Diffusion Experiment in a Longshore Current Field. Coast. Eng. J. 45 (3), 471-487.
- 30. Thornton, E., 1970. Variation of longshore currents across the surf zone. In: Proceedings of the 12th Conference on Coastal Engineering. American Society of Civil Engineers, Washington, DC, 291-308.
- 31. Thornton, E., Guza, R., 1986. Surf Zone Longshore Currents and Random Waves: Field Data and Models. J. Phys. Oceanogr. 16, 1165-1178.
- 32. Tsai, C.-P., Chen, H.-B., Hwung, H.-H., Huang, M.J., 2005. Examination of empirical formulas for wave shoaling and breaking on steep slopes. Ocean Eng. 32, 469-483.
- 33. Visser, P., 1982. The proper longshore current in a wave basin. Department of Civil Engineering, Delft University of Technology, Delft, Netherlands Technical Report No. 82-1.
- 34. Weggel, J., 1972. Maximum Breaker Height. J. Waterway. Div. -ASCE 98 (WW4), 529-548.
- 35. Wen, S., Yu, Z.W., 1984. Theories and Calculation Principle for Ocean Waves (in Chinese). Science Press, Beijing, China.
- 36. Winckler, P., Liu, P.L.-F., Mei, C.C., 2013. Advective Diffusion of Contaminants in the Surf Zone. J. Waterw. Port C Ocean Eng. 139 (6), 437-454.
- 37. Yan, S., Zou, Z., Shen, L., Wang, Y, 2021. Calculation Model for Multiple Breaking Waves and Wave-Induced Currents on Very Gentle Beaches. J. Waterw. Port C. Div. 147 (5), 04021017. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000643
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-597455ff-2bb7-4519-b4a0-54493c45f79b