Warianty tytułu
Języki publikacji
Abstrakty
The continuous process of urbanization and climate change has led to severe urban heat island (UHI) effects. Constructing parks with cooling capabilities is considered an effective measure to alleviate UHI effects. However, most studies only quantify the cooling effect from a maximum value perspective, lacking a measure of temperature diffusion in space. This study combines the perspectives of maximum value and accumulation to define a cold island index, quantifying the cooling effect of 40 urban parks in the main urban area of Xi'an city. The results show that, on average, urban parks can reduce the surrounding environment by approximately 2.3℃, with a cooling range of about 127.1ha, which is three times the park area. Different factors drive the measurement of the cooling effect using different cold island indexes, but all indexes are highly correlated with green space area. There are significant differences in the cooling effect among different types of parks, and overall, ecological parks have the best cooling effect. The directional spread of internal cold islands in parks is most related to park shape, while external spread is related to surrounding green spaces. The research results have practical value in the construction of parks with cooling effects and the sustainable development of cities in urban planning processes.
Czasopismo
Rocznik
Tom
Strony
95--109
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Shaanxi University of Science and Technology, China
autor
- Shaanxi University of Science and Technology, China
autor
- Shaanxi University of Science and Technology, China
autor
- Shaanxi University of Science and Technology, China
autor
- Shaanxi University of Science and Technology, China
autor
- Shaanxi University of Science and Technology, China
Bibliografia
- 1. Algretawee, H., Rayburg, S. & Neave, M. (2019). Estimating the effect of park proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecological Engineering, 138, pp. 374-390. DOI:10.1016/j.ecoleng.2019.07.034
- 2. Anjos, M. & Lopes, A. (2017). Urban heat island and park Cool island intensities in the coastal city of Aracaju, north-eastern Brazil. Sustainability, 9, 8, pp. 1379. DOI:10.3390/su9081379
- 3. Chatterjee, R., Singh, N., Thapa, S., Sharma, D. & Kumar, D. (2017). Retrieval of land surface temperature (LST) from Landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. International Journal of Applied Earth Observation and Geoinformation, 58, pp. 264-277. DOI:10.1016/j.jag.2017.02.017
- 4. Chen, M., Jia, W., Yan, L., Du, C. & Wang, K. (2022). Quantification and mapping cooling effect and its accessibility of urban parks in an extreme heat event in a megacity. Journal of Cleaner Production, 334, pp. 130252. DOI:10.1016/j.jclepro.2021.130252
- 5. Gao, M., Chen, F., Shen, H. & Li, H. (2020). A tale of two cities: Different urban heat mitigation efficacy with the same strategies. Theoretical and Applied Climatology, 142, pp. 1625-1640. DOI:10.1007/s00704-020-03390-2
- 6. Gao, Z., Zaitchik, B.F., Hou, Y. & Chen, W. (2022). Toward park design optimization to mitigate the urban heat Island: Assessment of the cooling effect in five US cities. Sustainable Cities and Society, 81, pp. 103870. DOI:10.1016/j.scs.2022.103870
- 7. Hong, C., Wang, Y., Gu, Z. & Yu, W. C. (2022). Cool facades to mitigate urban heat island effects. Indoor and Built Environment, 31, 10, pp. 2373-2377. DOI:10.1177/1420326x221115369
- 8. Huang, M., Cui, P. & He, X. (2018). Study of the cooling effects of urban green space in Harbin in terms of reducing the heat island effect. Sustainability, 10, 4, pp. 1101. DOI:10.3390/su10041101
- 9. Huang, X. & Wang, Y. (2019). Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS Journal of Photogrammetry and Remote Sensing, 152, pp. 119-131. DOI:10.1016/j.isprsjprs.2019.04.010
- 10. Li, H., Zhou, Y., Jia, G., Zhao, K. & Dong, J. (2022). Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geoscience Frontiers, 13, 1, 101141. DOI: 10.1016/j.gsf.2021.101141
- 11. Liao, W., Guldmann, J.-M., Hu, L., Cao, Q., Gan, D. & Li, X. (2023). Linking urban park cool island effects to the landscape patterns inside and outside the park: A simultaneous equation modeling approach. Landscape and Urban Planning, 232, pp. 104681. DOI:10.1016/j.landurbplan.2022.104681
- 12. Malakar, N. K., Hulley, G. C., Hook, S.J., Laraby, K., Cook, M. & Schott, J.R. (2018). An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Transactions on Geoscience and Remote Sensing, 56, 10, pp. 5717-5735. DOI:10.1109/tgrs.2018.2824828
- 13. Mandeli, K. (2019). Public space and the challenge of urban transformation in cities of emerging economies: Jeddah case study. Cities, 95, pp. 102409. DOI:10.1016/j.cities.2019.102409
- 14. Mashu & Puzhi (2020). Research on surface temperature inversion algorithm based on Landsat8 data: A case study of Urumqi. Computer and Digital Engineering, 48, 10, pp. 2316-2320. DOI:10.1088/1755-1315/450/1/012031
- 15. Ozgeldinova, Z., Zhanguzhina, A. & Ulykpanova, M. (2023). Spatial and temporal analysis of landscape dynamics in the Kostanay region under an-thropogenic impacts. Archives of Environmental Protection, 49, pp.80-94. DOI:10.24425/aep.2023.148687
- 16. Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J. & Wu, J. (2021). How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sensing of Environment, 252, 112135. DOI:10.1016/j.rse.2020.112135
- 17. Qian, W. & Li, X. (2023). A cold island connectivity and network perspective to mitigate the urban heat island effect. Sustainable Cities and Society, 94, 104525. DOI:10.1016/j.scs.2023.104525
- 18. Qiu, J., Li, X. &Qian, W. (2023). Optimizing the spatial pattern of the cold island to mitigate the urban heat island effect. Ecological Indicators, 154, pp. 110550. DOI:10.1016/j.ecolind.2023.110550
- 19. Ruochen, Y., Jia, X., Dan, Z.& Yang, H. (2022). Measuring the Cooling Benefits of Urban Parks and Climate Adaptation Design Strategies. Chinese Landscape Architecture, 6, pp. 121. DOI:10.3390/ani12172251
- 20. Saaroni, H., Amorim, J. H., Hiemstra, J.& Pearlmutter, D. (2018). Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban climate, 24, pp. 94-110. DOI:10.1016/j.uclim.2018.02.001
- 21. Sun, C., Wang, Y. & Zhu, Z. (2023). Urbanization and residents’ health: from the perspective of environmental pollution. Environmental Science and Pollution Research, 30, 25, pp.1-19. DOI:10.1007/s11356-023-26979-2
- 22. Toparlar, Y., Blocken, B., v. Maiheu, B. & Van Heijst, G. (2018). The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium. International Journal of Climatology, 38, pp. e303-e322. DOI:10.1002/joc.5371
- 23. Wang, W., Liu, K., Tang, R. & Wang, S. (2019). Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Physics and Chemistry of the Earth, Parts a/b/c, 110, pp. 168-175. DOI:10.1016/j.pce.2019.01.002
- 24. Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M. & La Rosa, D. (2019). Understanding the relationship between urban blue infrastructure and land surface temperature. Science of the Total Environment, 694, 133742. DOI:10.1016/j.scitotenv.2019.133742
- 25. Wu, P., Zhong, K., Wang, L., Xu, J., Liang, Y., Hu, H., Wang, Y. & Le, J. (2022). Influence of underlying surface change caused by urban renewal on land surface temperatures in Central Guangzhou. Building and Environment, 215, 108985. DOI:10.1016/j.buildenv.2022.108985
- 26. Xiao, X. D., Dong, L., Yan, H., Yang, N. & Xiong, Y. (2018). The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40, pp. 428-439. DOI:10.1016/j.scs.2018.04.002
- 27. Yao, X., Yu, K., Zeng, X., Lin, Y., Ye, B., Shen, X & Liu, J. (2022). How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. Journal of Cleaner Production, 330, 129852. DOI:10.1016/j.jclepro.2021.129852
- 28. Zhou, Y., Zhao, H., Mao, S., Zhang, G., Jin, Y., Luo, Y., Huo, W., Pan, Z., An, P. & Lun, F. (2022). Studies on urban park cooling effects and their driving factors in China: Considering 276 cities under different climate zones. Building and Environment, 222, 109441. DOI:10.1016/j.buildenv.2022.109441
- 29. Zhu, X., Wang, X., Yan, D., Liu, Z. & Zhou, Y. (2019). Analysis of remotely-sensed ecological indexes' influence on urban thermal environment dynamic using an integrated ecological index: a case study of Xi’an, China. International journal of remote sensing, 40, 9, pp. 3421-3447. DOI:10.1080/01431161.2018.1547448
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-597122bf-2a73-4c34-8486-73fc1db77e28