Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 5 | 258--267
Tytuł artykułu

Optimizing Amorphous Silica Recovery from Rice Husk Cultivated under Different Soils for Supplementary Cementitious Material Application

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amorphous silica (a-SiO₂), found in rice husk ash, is a valuable material due to its high silica content, large surface area, excellent pozzolanic properties, and strong binding ability with cement. These characteristics make it ideal for use as a supplementary cementitious material and a sustainable alternative for the partial replacement of ordinary Portland cement. This study aims to optimize the recovery process of amorphous silica from rice husks cultivated under various soil conditions (normal, drought, saline, and acidic soils), which are experiencing significant fluctuations due to climate change in many rice-producing countries. Experiments were conducted on rice husks under different pyrolysis conditions at temperatures of 700 °C, 800 °C, and 900 °C, with varying calcination durations. Through comprehensive analysis using Scanning electron microscopy (SEM) and X-ray Diffraction (XRD), along with the evaluation of amorphous silica recovery efficiency, we identified the optimal conditions for producing amorphous silica from rice husks. The analysis revealed that the highest recovery efficiency was achieved at a pyrolysis temperature of 700 °C for 1 hour. Under these conditions, the recovery efficiencies were 87.9% for normal soil RHA, 96.5% for saline soil RHA, 94.8% for drought soil RHA, and 95.6% for acidic soil RHA. The phase structure, surface morphology, and particle size of the RHA-derived amorphous silica, ground to micrometer sizes, were found to be similar to commercial products such as ordinary Portland cement and silica fume. This study provides a foundation for scaling up the production of amorphous silica from rice husk ash on an industrial scale, considering the relationship between optimal recovery efficiency and the origin of the rice husk ash, thus contributing to the development of environmentally friendly construction materials.
Wydawca

Rocznik
Strony
258--267
Opis fizyczny
Bibliogr. 39 poz., fig.
Twórcy
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam, Phamviethung@huaf.edu.vn
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
autor
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
autor
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
  • Faculty of Engineering and Technology, University of Agriculture and Forestry, Hue University, Thua Thien Hue 530000, Vietnam
Bibliografia
  • 1. Nuaklong P., Jongvivatsakul P., Pothisiri T., Sata V., and Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete, Journal of Cleaner Production, 2020; 252: 119797. https://doi.org/10.1016/j.jclepro.2019.119797
  • 2. Khan M., Abbas Y., and Fares G. Review of high and ultrahigh performance cementitious compostes incorporating various combinations of fibers and ultrafines, Journal of King Saud University- Engineering Sciences, 2017; 29: 339–347. https://doi.org/10.1016/j.jksues.2017.03.006
  • 3. Sani J., Yohanna P., and Chukwujama I. Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material, Journal of King Saud University-Engineering Sciences, 2020; 32: 11–18. https://doi.org/10.1016/j.jksues.2018.11.001
  • 4. Rattanachu P., Toolkasikorn P., Tangchirapat W., Chindaprasirt P., and Jaturapitakkul C. Performance of recycled aggregate concrete with rice husk ash as cement binder, Cement and Concrete Compos- ites, 2020; 108: 103533. https://doi.org/10.1016/j. cemconcomp.2020.103533
  • 5. Al-Kutti W., Islam A.S., and Nasir M. Potential use of date palm ash in cement-based materials, Journal of King Saud University-Engineering Sciences, 2019; 31: 26–31. https://doi.org/10.1016/j.jksues.2017.01.004
  • 6. Wang J., Xiao J., Zhang Z., Han K., Hu X., and Jiang F. Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review, Construction and Building Mateials, 2021; 288: 123068. https://doi.org/10.1016/j. conbuildmat.2021.123068
  • 7. Sandhu R.K., Siddique R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review, Construction and Building Materials, 2017; 153: 751–764. https://doi.org/10.1016/j. conbuildmat.2017.07.165
  • 8. Givi A.N., Rashid S., Nora F., Aziz A., Salleh M. Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review, 2010.
  • 9. El-Sayed M.A.and El-Samni T.M. Physical and chemical properties of rice straw ash and its effect on the cement paste produced from different cement types, Journal of King Saud University-Engineering Sciences, 2006; 19: 21–29. https://doi.org/10.1016/ S1018-3639(18)30845-6
  • 10. Meddah M., Praveenkumar T., Vijayalakshmi M., Manigandan S., and Arunachalam R. Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete, Construction and Building Materials, 2020; 255: 119358. https://doi.org/10.1016/j.conbuildmat.2020.119358
  • 11. Cizer Ö., Campforts J., Van Balen K., Elsen J., and Van Gemert D. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration, in International Symposium on Brittle Matrix Composites, Date: 2006/10/23-2006/10/25, Location: Warsaw, Poland, 2006; 589–599.
  • 12. Habeeb G.A. and Mahmud H.B. Study on properties of rice husk ash and its use as cement replacement material, Materials Research, 2010; 13: 185–190. https://doi. org/10.1590/s1516-14392010000200011
  • 13. De Sensale G.R. Effect of rice-husk ash on durability of cementitious materials, Cement and Concrete Composites, 2010; 32: 718–725.
  • 14. Salas A., Delvasto S., de Gutierrez R.M., and Lange D. Comparison of two processes for treating rice husk ash for use in high performance concrete, Cement and concrete research, 2009; 39: 773–778. https://doi.org/10.1016/j.cemconres.2009.05.006
  • 15. Siddika A., Mamun M.A.A., Alyousef R., and Mohammadhosseini H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete, Journal of King Saud University - Engineering Sciences, 2021; 33: 294–307. https://doi. org/10.1016/j.jksues.2020.10.006
  • 16. Antiohos S., Tapali J., Zervaki M., Sousa-Coutinho J., Tsimas S., and Papadakis V. Low embodied energy cement containing untreated RHA: A strength development and durability study, Construction and Building Materials, 2013; 49: 455–463. https://doi. org/10.1016/j.conbuildmat.2013.08.046
  • 17. Djamaluddin A.R., Caronge M.A., Tjaronge M., Rahim I.R., and Noor N.M. Abrasion resistance and compressive strength of unprocessed rice husk ash concrete, Asian Journal of Civil Engineering, 2018; 19: 867–876.
  • 18. Nzereogu P., Omah A., Ezema F., Iwuoha E., and Nwanya A. Silica extraction from rice husk: Comprehensive review and applications, Hybrid Advances, 2023; 100111. https://doi.org/10.1016/j.hybadv.2023.100111
  • 19. Mboya H.A., King’ondu C.K., Njau K.N., and Mrema A.L. Measurement of pozzolanic activity indexof scoria, pumice, and rice husk ash as potential supplementary cementitious materials for Portland cement, Advances in Civil Engineering, 2017; 6952645. https://doi.org/10.1155/2017/6952645
  • 20. Nair D.G., Jagadish K., and Fraaij A. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing, Cement and Concrete Research, 2006; 36: 1062–1071. https://doi.org/10.1016/j. cemconres.2006.03.012
  • 21. Ahmed A.E. and Adam F. Indium incorporated silica from rice husk and its catalytic activity, Microporous and mesoporous materials, 2007; 103: 284–295. https://doi.org/10.1016/j.micromeso.2007.01.055
  • 22. Alaneme K.K., Ekperusi J.O., and Oke S.R. Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide, Journal of King Saud University-Engineering Sciences, 2018; 30: 391: 397. https:// doi.org/10.1016/j.jksues.2016.08.001
  • 23. Della V.P., Kühn I., and Hotza D. Rice husk ash as an alternate source for active silica production, Materials letters, 2002; 57: 818–821.
  • 24. Bazargan A., Wang Z., Barford J.P., Saleem J., and McKay G. Optimization of the removal of lignin and silica from rice husks with alkaline peroxide, Journal of Cleaner Production, 2020; 260: 120848. https://doi.org/10.1016/j.jclepro.2020.120848
  • 25. Ghorbani F., Sanati A.M., and Maleki M. Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique, Environmental Studies of Persian Gulf, 2015; 2: 56–65.
  • 26. Zou Y. and Yang T. Rice husk, rice husk ash and their applications, in Rice bran and rice bran oil, ed: Elsevier, 2019; 207–246.
  • 27. Nassar M.Y., Ahmed I.S., and Raya M.A. A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions, Journal of Molecular Liquids, 2019; 282: 251–263, https://doi.org/10.1016/j.molliq.2019.03.017
  • 28. Schlomach J. and Kind M. Investigations on the semi-batch precipitation of silica, Journal of colloid and interface science, 2004; 277: 316–326.
  • 29. Joglekar S.N., Kharkar R.A., Mandavgane S.A., and Kulkarni B.D. Process development of silica extraction from RHA: a cradle to gate environmental impact approach, Environmental Science and Pollution Research, 2019; 26: 492–500. https://doi. org/10.1007/s11356-018-3648-9
  • 30. Costa J.A.S. and Paranhos C.M. Systematic evaluation of amorphous silica production from rice husk ashes, Journal of Cleaner Production, 2018; 192: 688–697. https://doi.org/10.1016/j.jclepro.2018.05.028
  • 31. Numpilai T., Ng K.H., Polsomboon N., Cheng C.K., Donphai W., Chareonpanich M, et al., Hydrothermal synthesis temperature induces sponge-like loose silica structure: A potential support for Fe2O3- based adsorbent in treating As (V)-contaminated water, Chemosphere, 2022; 308: 136267. https:// doi.org/10.1016/j.chemosphere.2022.136267
  • 32. Earnshaw A., Greenwood N.N. Chemistry of the Elements Butterworth-Heinemann Oxford, 1997; 60.
  • 33. Bakar R.A., Yahya R., and Gan S.N. Production of High Purity Amorphous Silica from Rice Husk, Procedia Chemistry, 2016; 19: 189–195. https://doi. org/10.1016/j.proche.2016.03.092
  • 34. Atta A., Jibril B., Aderemi B., and Adefila S. Preparation of analcime from local kaolin and rice husk ash, Applied Clay Science, 2012; 61: 8–13. https:// doi.org/10.1016/j.clay.2012.02.018
  • 35. Zabihi S.M., Tavakoli H., and Mohseni E. Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete, Journal of Materials in Civil Engineering, 2018; 30: 04018183. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002379
  • 36. H.P.V., P. D.V., T. D.T., P. P.T.T., S. L.V.T., and D.T.N., Effect of pyrolysis process to derive silica from rice husk. Tạp chí Khoa học và công nghệ nông nghiệp Trường Đại học Nông Lâm Huế, 2023; 7: 3729–3737. https://doi.org/10.46826/huaf-jasat.v7n2y2023.1038
  • 37. Bish D.L. and Howard S. Quantitative phase analy- sis using the Rietveld method, Journal of Applied Crystallography, 1988; 21: 86–91. https://doi. org/10.1107/S0021889887009415
  • 38. C.-L. Hwang and D.-S. Wu, Properties of cement paste containing rice husk ash, Special Publication, 1989; 114: 733–762.
  • 39. Umasabor R. and Okovido J. Fire resistance evaluation of rice husk ash concrete, Heliyon, 2018; 4: e01035. https://doi.org/10.1016/j.heliyon.2018. e01035
  • 1. Nuaklong P., Jongvivatsakul P., Pothisiri T., Sata V., and Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete, Journal of Cleaner Production, 2020; 252: 119797. https://doi.org/10.1016/j.jclepro.2019.119797
  • 2. Khan M., Abbas Y., and Fares G. Review of high and ultrahigh performance cementitious compostes incorporating various combinations of fibers and ultrafines, Journal of King Saud University- Engineering Sciences, 2017; 29: 339–347. https://doi.org/10.1016/j.jksues.2017.03.006
  • 3. Sani J., Yohanna P., and Chukwujama I. Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material, Journal of King Saud University-Engineering Sciences, 2020; 32: 11–18. https://doi.org/10.1016/j.jksues.2018.11.001
  • 4. Rattanachu P., Toolkasikorn P., Tangchirapat W., Chindaprasirt P., and Jaturapitakkul C. Performance of recycled aggregate concrete with rice husk ash as cement binder, Cement and Concrete Compos- ites, 2020; 108: 103533. https://doi.org/10.1016/j. cemconcomp.2020.103533
  • 5. Al-Kutti W., Islam A.S., and Nasir M. Potential use of date palm ash in cement-based materials, Journal of King Saud University-Engineering Sciences, 2019; 31: 26–31. https://doi.org/10.1016/j.jksues.2017.01.004
  • 6. Wang J., Xiao J., Zhang Z., Han K., Hu X., and Jiang F. Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review, Construction and Building Mateials, 2021; 288: 123068. https://doi.org/10.1016/j. conbuildmat.2021.123068
  • 7. Sandhu R.K., Siddique R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review, Construction and Building Materials, 2017; 153: 751–764. https://doi.org/10.1016/j. conbuildmat.2017.07.165
  • 8. Givi A.N., Rashid S., Nora F., Aziz A., Salleh M. Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review, 2010.
  • 9. El-Sayed M.A.and El-Samni T.M. Physical and chemical properties of rice straw ash and its effect on the cement paste produced from different cement types, Journal of King Saud University-Engineering Sciences, 2006; 19: 21–29. https://doi.org/10.1016/ S1018-3639(18)30845-6
  • 10. Meddah M., Praveenkumar T., Vijayalakshmi M., Manigandan S., and Arunachalam R. Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete, Construction and Building Materials, 2020; 255: 119358. https://doi.org/10.1016/j.conbuildmat.2020.119358
  • 11. Cizer Ö., Campforts J., Van Balen K., Elsen J., and Van Gemert D. Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration, in International Symposium on Brittle Matrix Composites, Date: 2006/10/23-2006/10/25, Location: Warsaw, Poland, 2006; 589–599.
  • 12. Habeeb G.A. and Mahmud H.B. Study on properties of rice husk ash and its use as cement replacement material, Materials Research, 2010; 13: 185–190. https://doi. org/10.1590/s1516-14392010000200011
  • 13. De Sensale G.R. Effect of rice-husk ash on durability of cementitious materials, Cement and Concrete Composites, 2010; 32: 718–725.
  • 14. Salas A., Delvasto S., de Gutierrez R.M., and Lange D. Comparison of two processes for treating rice husk ash for use in high performance concrete, Cement and concrete research, 2009; 39: 773–778. https://doi.org/10.1016/j.cemconres.2009.05.006
  • 15. Siddika A., Mamun M.A.A., Alyousef R., and Mohammadhosseini H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete, Journal of King Saud University - Engineering Sciences, 2021; 33: 294–307. https://doi. org/10.1016/j.jksues.2020.10.006
  • 16. Antiohos S., Tapali J., Zervaki M., Sousa-Coutinho J., Tsimas S., and Papadakis V. Low embodied energy cement containing untreated RHA: A strength development and durability study, Construction and Building Materials, 2013; 49: 455–463. https://doi. org/10.1016/j.conbuildmat.2013.08.046
  • 17. Djamaluddin A.R., Caronge M.A., Tjaronge M., Rahim I.R., and Noor N.M. Abrasion resistance and compressive strength of unprocessed rice husk ash concrete, Asian Journal of Civil Engineering, 2018; 19: 867–876.
  • 18. Nzereogu P., Omah A., Ezema F., Iwuoha E., and Nwanya A. Silica extraction from rice husk: Comprehensive review and applications, Hybrid Advances, 2023; 100111. https://doi.org/10.1016/j.hybadv.2023.100111
  • 19. Mboya H.A., King’ondu C.K., Njau K.N., and Mrema A.L. Measurement of pozzolanic activity indexof scoria, pumice, and rice husk ash as potential supplementary cementitious materials for Portland cement, Advances in Civil Engineering, 2017; 6952645. https://doi.org/10.1155/2017/6952645
  • 20. Nair D.G., Jagadish K., and Fraaij A. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing, Cement and Concrete Research, 2006; 36: 1062–1071. https://doi.org/10.1016/j. cemconres.2006.03.012
  • 21. Ahmed A.E. and Adam F. Indium incorporated silica from rice husk and its catalytic activity, Microporous and mesoporous materials, 2007; 103: 284–295. https://doi.org/10.1016/j.micromeso.2007.01.055
  • 22. Alaneme K.K., Ekperusi J.O., and Oke S.R. Corrosion behaviour of thermal cycled aluminium hybrid composites reinforced with rice husk ash and silicon carbide, Journal of King Saud University-Engineering Sciences, 2018; 30: 391: 397. https:// doi.org/10.1016/j.jksues.2016.08.001
  • 23. Della V.P., Kühn I., and Hotza D. Rice husk ash as an alternate source for active silica production, Materials letters, 2002; 57: 818–821.
  • 24. Bazargan A., Wang Z., Barford J.P., Saleem J., and McKay G. Optimization of the removal of lignin and silica from rice husks with alkaline peroxide, Journal of Cleaner Production, 2020; 260: 120848. https://doi.org/10.1016/j.jclepro.2020.120848
  • 25. Ghorbani F., Sanati A.M., and Maleki M. Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique, Environmental Studies of Persian Gulf, 2015; 2: 56–65.
  • 26. Zou Y. and Yang T. Rice husk, rice husk ash and their applications, in Rice bran and rice bran oil, ed: Elsevier, 2019; 207–246.
  • 27. Nassar M.Y., Ahmed I.S., and Raya M.A. A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions, Journal of Molecular Liquids, 2019; 282: 251–263, https://doi.org/10.1016/j.molliq.2019.03.017
  • 28. Schlomach J. and Kind M. Investigations on the semi-batch precipitation of silica, Journal of colloid and interface science, 2004; 277: 316–326.
  • 29. Joglekar S.N., Kharkar R.A., Mandavgane S.A., and Kulkarni B.D. Process development of silica extraction from RHA: a cradle to gate environmental impact approach, Environmental Science and Pollution Research, 2019; 26: 492–500. https://doi. org/10.1007/s11356-018-3648-9
  • 30. Costa J.A.S. and Paranhos C.M. Systematic evaluation of amorphous silica production from rice husk ashes, Journal of Cleaner Production, 2018; 192: 688–697. https://doi.org/10.1016/j.jclepro.2018.05.028
  • 31. Numpilai T., Ng K.H., Polsomboon N., Cheng C.K., Donphai W., Chareonpanich M, et al., Hydrothermal synthesis temperature induces sponge-like loose silica structure: A potential support for Fe2O3- based adsorbent in treating As (V)-contaminated water, Chemosphere, 2022; 308: 136267. https:// doi.org/10.1016/j.chemosphere.2022.136267
  • 32. Earnshaw A., Greenwood N.N. Chemistry of the Elements Butterworth-Heinemann Oxford, 1997; 60.
  • 33. Bakar R.A., Yahya R., and Gan S.N. Production of High Purity Amorphous Silica from Rice Husk, Procedia Chemistry, 2016; 19: 189–195. https://doi. org/10.1016/j.proche.2016.03.092
  • 34. Atta A., Jibril B., Aderemi B., and Adefila S. Preparation of analcime from local kaolin and rice husk ash, Applied Clay Science, 2012; 61: 8–13. https:// doi.org/10.1016/j.clay.2012.02.018
  • 35. Zabihi S.M., Tavakoli H., and Mohseni E. Engineering and microstructural properties of fiber-reinforced rice husk–ash based geopolymer concrete, Journal of Materials in Civil Engineering, 2018; 30: 04018183. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002379
  • 36. H.P.V., P. D.V., T. D.T., P. P.T.T., S. L.V.T., and D.T.N., Effect of pyrolysis process to derive silica from rice husk. Tạp chí Khoa học và công nghệ nông nghiệp Trường Đại học Nông Lâm Huế, 2023; 7: 3729–3737. https://doi.org/10.46826/huaf-jasat.v7n2y2023.1038
  • 37. Bish D.L. and Howard S. Quantitative phase analy- sis using the Rietveld method, Journal of Applied Crystallography, 1988; 21: 86–91. https://doi. org/10.1107/S0021889887009415
  • 38. C.-L. Hwang and D.-S. Wu, Properties of cement paste containing rice husk ash, Special Publication, 1989; 114: 733–762.
  • 39. Umasabor R. and Okovido J. Fire resistance evaluation of rice husk ash concrete, Heliyon, 2018; 4: e01035. https://doi.org/10.1016/j.heliyon.2018. e01035
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5927aaa0-ba93-4e4f-9c37-ee5d62362035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.