Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e127
Tytuł artykułu

Evaluation of the corrosion resistance of spark plasma sintered stainless steel 316L matrix composites with zirconium diboride in sulfuric acid

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The infuence of the zirconium diboride content and the method of initial material preparation on the corrosion properties of the composite on the 316L stainless steel matrix were determined. The powders were prepared in a Turbula mixer and a planetary mill. The corrosion properties were estimated on the basis of electrochemical tests, including open-circuit potential measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy. The presence of the ceramic phase changes the corrosion resistance of the tested materials due to porosity, which afects the corrosion mechanism. The standard potentiodynamic tests do not reveal poor corrosion resistance of porous materials, and only 24 h tests reveal accurate corrosion resistance of composite materials. Composites cannot go into a stable passive state because of the penetration of electrolytes into the pores and tend to oxidize systematically. 24-h corrosion tests indicate that samples prepared in a planetary mill show better corrosion resistance than those prepared in a Turbula mixer.
Wydawca

Rocznik
Strony
art. no. e127
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland
  • Institute of Technology, Pedagogical University of Krakow, Podchorazych 2 Str, 30-084 Krakow, Poland
  • Institute of Technology, Pedagogical University of Krakow, Podchorazych 2 Str, 30-084 Krakow, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland, rkowalik@agh.edu.pl
Bibliografia
  • 1. Grasso S, Sakka Y, Maizza G. Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Sci Technol Adv Mater. 2009;10:53001. https://doi.org/10.1088/1468-6996/10/5/053001.
  • 2. Tokita M. Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol Jpn. 1993;30:790-804. https://doi.org/10.4164/sptj.30.11_790.
  • 3. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M. Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater. 2014;16:830-49. https://doi.org/10.1002/adem.201300409.
  • 4. Munir ZA, Anselmi-Tamburini U, Ohyanagi M. The efect of electric feld and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 2006;41:763-77. https://doi.org/10.1007/s10853-006-6555-2.
  • 5. Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A. 2000;287:183-8. https://doi.org/10.1016/s0921-5093(00)00773-5.
  • 6. Guo SQ. Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc. 2009;29:995-1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008.
  • 7. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90:1347-64. https://doi.org/10.1111/j.1551-2916.2007.01583.x.
  • 8. Bansal NP. Handbook of ceramic composites. Boston: Kluwer Academic Publishers; 2005.
  • 9. Morz C. Zirconium diboride. Am Ceram Soc Bull. 1995;74:164-5.
  • 10. Asadipanah Z, Rajabi M. Production of Al-ZrB2 nano-composites by microwave sintering process. J Mater Sci Mater Electron. 2015;26:6148-56. https://doi.org/10.1007/s10854-015-3195-9.
  • 11. Nallusamy M, Sundaram S, Kalaiselvan K. Fabrication, characterization and analysis of improvements in mechanical properties of AA7075/ZrB2 in-situ composites. Measurement. 2019;136:356-66. https://doi.org/10.1016/j.measurement.2018.12.110.
  • 12. Wang C, Lin H, Zhang Z, Li W. Fabrication, interfacial characteristics and strengthening mechanisms of ZrB2 microparticles reinforced Cu composites prepared by hot-pressed sintering. J Alloys Compd. 2018;748:546-52. https://doi.org/10.1016/j.jallcom.2018.03.169.
  • 13. Ghasali E, Pakseresht A, Safari-kooshali F, Agheli M, Ebadzadeh T. Investigation on microstructure and mechanical behavior of Al-ZrB2 composite prepared by microwave and spark plasma sintering. Mater Sci Eng A. 2015;627:27-30. https://doi.org/10.1016/j.msea.2014.12.096.
  • 14. Kaku SMY, Khanra AK, Davidson MJ. Efect of deformation on properties of Al/Al-alloy ZrB2 powder metallurgy composite. J Alloys Compd. 2018;747:666-75. https://doi.org/10.1016/j.jallcom.2018.03.088.
  • 15. Sulima I, Hyjek P, Jaworska L, Perek-Nowak M. Infuence of ZrB2 on microstructure and properties of steel matrix composites prepared by spark plasma sintering. Materials. 2020. https://doi.org/10.3390/ma13112459.
  • 16. Dinaharan I, Murugan N, Parameswaran S. Infuence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites. Mater Sci Eng A. 2011;528:5733-40. https://doi.org/10.1016/j.msea.2011.04.033.
  • 17. Sulima I, Putyra P, Hyjek P, Tokarski T. Efect of SPS parameters on densifcation and properties of steel matrix composites. Adv Powder Technol. 2015. https://doi.org/10.1016/j.apt.2015.05.010.
  • 18. Akhtar F, Feng P, Du X, Jawid AS, Tian J, Guo S. Microstructure and property evolution during the sintering of stainless steel alloy with Si3N4. Mater Sci Eng A. 2008;472:324-31. https://doi.org/10.1016/j.msea.2007.04.032.
  • 19. Tjong SC, Lau KC. Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles. Compos Sci Technol. 2000. https://doi.org/10.1016/s0266-3538(00)00008-7.
  • 20. Sedriks AJ. Corrosion of stainless steels. New York: Wiley; 1996.
  • 21. Menapace C, Molinari A, Kazior J, Pieczonka T. Surface self-densifcation in boron alloyed austenitic stainless steel and its efect on corrosion and impact resistance. Powder Metall. 2013;50:326-35. https://doi.org/10.1179/174329007X205028.
  • 22. Deforian F, Ciaghi L, Kazior J. Electrochemical characterization of vacuum sintered copper alloyed austenitic stainless steel. Mater Corros. 1992;43:447-52. https://doi.org/10.1002/MACO.19920 430907.
  • 23. Itzhak D, Harush S. The effect of Sn addition on the corrosion behaviour of sintered stainless steel in H2SO4. Corros Sci. 1985;25:883-8. https://doi.org/10.1016/0010-938X(85)90018-6.
  • 24. Angelini E, Bianco P, Rosalbino F, Rosso M, Scavino G. Sintered austenitic stainless steels: corrosion behaviour in sulphate and chloride media. Mater Corros. 1994;45:392-401. https://doi.org/10.1002/MACO.19940450705.
  • 25. German RM. Sintering theory and practice. New York: Wiley; 1996.
  • 26. Kang S-JL. Sintering: densifcation, grain growth, and microstructure. Amsterdam: Elsevier; 2008.
  • 27. Raja Annamalai A, Upadhyaya A, Agrawal DK. Efect of heating mode and Y2O3 addition on electrochemical response on austenitic and ferritic stainless steels. Corros Eng Sci Technol. 2015;50:91-102. https://doi.org/10.1179/1743278214Y.0000000176.
  • 28. Padmavathi C, Upadhyaya A, Agrawal D. Corrosion behavior of microwave-sintered austenitic stainless steel composites. Scr Mater. 2007. https://doi.org/10.1016/j.scriptamat.2007.06.007.
  • 29. Patel M. Corrosion behaviour of sintered 316l austenitic stainless steel composites, (n.d.). https://www.academia.edu/19239819/CORROSION_BEHAVIOUR_OF_SINTERED_316L_AUSTE NITIC_STAINLESS_STEEL_COMPOSITES. Accessed 1 July 2021.
  • 30. Jaworska L, Skrzekut T, Stępień M, Pałka P, Boczkal G, Zwoliński A, Noga P, Podsiadło M, Wnuk R, Ostachowski P. The pressure compaction of Zr-Nb powder mixtures and selected properties of sintered and KOBO-extruded Zr-xNb materials. Materials (Basel). 2021. https://doi.org/10.3390/MA14123172.
  • 31. Geenen K, Röttger A, Theisen W. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting. Mater Corros. 2017;68:764-75. https://doi. org/10.1002/maco.201609210.
  • 32. Itzhak D, Aghion E. Corrosion behaviour of hot-pressed austenitic stainless steel in H2SO4 solutions at room temperature. Corros Sci. 1983. https://doi.org/10.1016/0010-938X(83)90090-2.
  • 33. Fredriksson W, Petrini D, Edström K, Björefors F, Nyholm L. Corrosion resistances and passivation of powder metallurgical and conventionally cast 316L and 2205 stainless steels. Corros Sci. 2013;67:268-80. https://doi.org/10.1016/j.corsci.2012.10.021.
  • 34. Maocheng YAN, Jin XU, Libao YU, Tangqing WU, Cheng SUN, Wei KE. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte. Corros Sci. 2016;110:23-34. https://doi.org/10.1016/j.corsci.2016.04.006.
  • 35. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. 2nd ed. Hoboken: Wiley; 2017.
  • 36. Rocha AMF, Bastos AC, Cardoso JP, Rodrigues F, Fernandes CM, Soares E, Sacramento J, Senos AMR, Ferreira MGS. Corrosion behaviour of WC hardmetals with nickel-based binders. Corros Sci. 2019;147:384-93. https://doi.org/10.1016/j.corsci.2018.11.015.
  • 37. Kandala SR, Balani K, Upadhyaya A. Mechanical and electrochemical characterization of supersolidus sintered austenitic stainless steel (316 L). High Temp Mater Process (Lond). 2019;38:792-805. https://doi.org/10.1515/HTMP-2019-0032/MACHINEREADABLECITATION/RIS.
  • 38. Sulima I, Hyjek P, Podsiadło M. Fabrication of the zirconium diboride-reinforced composites by a combination of planetary ball milling, turbula mixing and spark plasma sintering. Materials. 2021. https://doi.org/10.3390/ma14144056.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58e1fb24-5928-47df-863f-13cc916b9a33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.