Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2024 | T. 19, z. 1 | 219--229
Tytuł artykułu

Assessment of heat balance in the FSRU regasification cycle aligns with IMO’s decarbonisation strategy

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 2023, the International Maritime Organization revised its greenhouse gas strategy, striving to reduce annual emissions from international shipping by at least 70% by 2040. The Mediterranean Sea will become an emission control area for sulphur oxides and particulate matter from May 2025, and the EU will include shipping in its Emission Trading System from 2024. Liquid natural gas is expected to become a cleaner marine fuel, but it alone cannot meet emission reduction goals. The cryogenic carbon capture process can separate CO2 from exhaust gases, compress it, and store it in a liquid state with high density. This study aims to integrate an energy balance equation model to analyse the energy exchange in the regasification process and identify potential areas for improvement and targeted solutions to enhance performance and comply with IMO emission regulations. Based on a mathematical model, the energy balances are calculated and yield the following results: steam heater (26,999 kW), R-290 preheater (5,837 kW), trim heater (3,290 kW), R-290 evaporator (13,322 kW), and LNG vaporiser (23,118 kW). A report also determined that within a temperature range between -56.6℃ and 31℃ and a pressure range of greater than 5.2 bar (absolute) and less than 74 bar (absolute), the CO2 is in a liquid phase. Due to CO2 density which fluctuates in liquid at 1032 kg/m3 and in solid phase at 1562 kg/m3 the physical condition is compatible with the storage stage of capture emission.
Wydawca

Czasopismo
Rocznik
Strony
219--229
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
Bibliografia
  • 1. Hua, W. & Sha, Y. & Zhang, X. Research progress of carbon capture and storage (CCS) technology based on the shipping industry. Ocean Engineering. 2023. Vol. 281. No. 114929.
  • 2. Chua, Y. & Soudagar, I. & Ng, S. & Meng, Q. Impact analysis of environmental policies on shipping fleet planning under demand uncertainty. Transportation Research Part D: Transport and Environment. 2023. Vol. 120.
  • 3. Wang, S. & Zhen, L. & Psaraftis, H. & Yan, R. Implications of the EU’s inclusion of maritime transport in the emissions trading system for shipping companies. Engineering. 2021. Vol. 7. No. 5. P. 554-557.
  • 4. Herdzik, J. Methane slip during cargo operations on LNG carriers and LNG-fueled vessels. New Trends in Production Engineering. 2018. Vol. 1. P. 293-299.
  • 5. Kawai, E. & Ozawa, A. & Leibowicz, B. Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan. Applied Energy. 2022. Vol. 328. No. 120183.
  • 6. National Energy Technology Laboratory. Carbon Capture and Storage Database. Available at: https://netl.doe.gov/carbon-management/carbon-storage/worldwide-ccs-database.
  • 7. Kawasaki Kisen Kaisha. World’s First CO2 Capture Plant on Vessel Installed on Coal Carrier CORONA UTILITY Launch of the CC-OCEAN Project Demonstration. 2021. Available at: https://www.kline.co.jp/en/news/csr/csr7601431474845700352/main/0/link/210805EN.pdf.
  • 8. Organization of Oil and Gas Climate Initiative. Is Carbon Capture on Ships Feasible? 2021. Available at: https://safety4sea.com/wp-content/uploads/2021/11/OGCI-STENA-Is-carbon-storage-technically-feasible-2021_11.pdf.
  • 9. Baxter, L. & Baxter, A. & Burt, S. Cryogenic CO2 Capture as a Cost-Effective CO2 Capture Process. Environmental Science, Engineering. 2009.
  • 10. Cann, D. & Willson, P. & Font-Palma, C. Experimental exploration of cryogenic CO2 capture utilising a moving bed. 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3366196.
  • 11. Naveiro, M. & Gomez, M. & Fernandez, I. & Insua, A. Energy efficiency and environmental measures for floating storage regasification units. Journal of Natural Gas Science and Engineering. 2021. Vol. 96. No. 104271.
  • 12. Martinaitis, V. & Vegyté, N. & Paulauskaité, S. & Sakmanas, A. Techniné termodinamika ir silumokaita. 2005. Available at: https://www.mokslobaze.lt/termodinamikos-ir-silumokaitos- konspektas-egzui.html [In Lithuanian: Technical thermodynamics and heat exchange].
  • 13. Merker, G.P. & Schwarz, C. & Stiesch, G. & Otto, F. Simulating Combustion - Simulation of combustion and pollutant formation for engine-development. New York: Springer. 2004.
  • 14. National Refrigerants. Safety Data Sheet of R290 Propane. 2021. Available at: https://refrigerants.com/wp-content/uploads/2019/12/SDS-R290-Propane.pdf.
  • 15. Bezyukov, K. Uses of a hladopotentsial of the liquefied natural gas for decrease in emissions of carbon dioxide heat power installations. Ship Power Plants Syst. Devices. 2016. DOI: 10.21821/2309-5180-2016-7-3-143-155.
  • 16. Linde. Safety advice - Carbon Dioxide. Available at:https://www.linde-gas.com/en/images/LMB_Safety%20Advice_01_66881_tcm17-165650.pdf.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58e0f4a8-b0ca-40ff-ac6a-7936a17bbc3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.