Warianty tytułu
Języki publikacji
Abstrakty
In the present study, a new method for fabricating ZrO2/AZ31 nanocomposite fillers of gas tungsten arc (GTA) welding was developed by applying accumulative roll bonding (ARB) to the magnesium sheets coated with ZrO2 nanoparticles. The purpose of ARB was to create a uniform dispersion of ZrO2 nanoparticles in the fillers and to form a good interfacial bonding between the magnesium matrix and ZrO2 nanoparticles. After welding, the effect of ZrO2 nanoparticles on the microstructure and mechanical properties of weld was evaluated. The test results showed that the yield strength of weld was greatly increased when using the nanocomposite fillers. The improvement in the yield strength was attributed to the grain refinement, coefficient of thermal expansion mismatch and Orowan strengthening mechanisms.
Czasopismo
Rocznik
Tom
Strony
397--402
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
- Mechanical Engineering Department, Petroleum University of Technology, Ahwaz, Iran
autor
- Young Researchers and Elite Club, Doroud Branch, Islamic Azad University, Doroud, Iran
autor
- Technical Inspection Department, Abadan Oil Refinery, Abadan, Iran
autor
- Technical Inspection Engineering Department, Petroleum University of Technology, Abadan, Iran, fattahi.put@gmail.com
autor
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
autor
- Materials Engineering Department, Isfahan University of Technology, Isfahan, Iran
Bibliografia
- [1] M. Fattahi, N. Nabhani, E. Rashidkhani, Y. Fattahi, S. Akhavan, N. Arabian, A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal, Micron 54– 55 (2013) 28–35.
- [2] M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, S. Akhavan, Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires, Micron 64 (2014) 20–27.
- [3] L. Liu, C. Dong, Gas tungsten-arc filler welding of AZ31 magnesium alloy, Materials Letters 60 (2006) 2194–2197.
- [4] S. Chai, D. Zhang, F. Pan, J. Dong, F. Guo, Y. Dong, Influence of post-weld hot rolling on the microstructure and mechanical properties of AZ31 magnesium alloy sheet, Materials Science and Engineering A 588 (2013) 208–213.
- [5] S.J. Yoo, S.H. Han, W.J. Kim, Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube containing aluminum powders, Scripta Materialia 67 (2012) 129–132.
- [6] C.W. Schmidt, C. Knieke, V. Maier, H.W. Hoppel, W. Peukert, M. Goken, Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement, Scripta Materialia 64 (2011) 245–248.
- [7] C. Lu, K. Tieu, D. Wexler, Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO2 particles, Journal of Materials Processing Technology 209 (2009) 4830–4834.
- [8] S. Amirkhanlou, R. Jamaati, B. Niroumand, M.R. Toroghinejad, Using ARB process as a solution for dilemma of Si and SiCp distribution in cast Al–Si/SiCp composites, Journal of Materials Processing Technology 211 (2011) 1159–1165.
- [9] C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, R. P. Liu, Effect of W particles on the properties of accumulatively roll-bonded Al/W composites, Materials Science and Engineering A 54 (2012) 120–124.
- [10] W.J. Kim, I.B. Park, S.H. Han, Formation of a nanocomposite- like microstructure in Mg–6Al–1Zn alloy, Scripta Materialia 66 (2012) 590–593.
- [11] N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy, Materials Science and Engineering A 472 (2008) 179–186.
- [12] M. Fattahi, M. Mohammady, N. Sajjadi, M. Honarmand, Y. Fattahi, S. Akhavan, Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints, Journal of Materials Processing Technology 217 (2015) 21–29.
- [13] M. Mabuchi, K. Higashi, Strengthening mechanisms of Mg–Si alloys, Acta Materialia 44 (1996) 4611–4618.
- [14] A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall– Petch effect, Materials Science and Engineering A 531 (2012) 112–118.
- [15] W.J. Kim, Y.J. Yu, The effect of the addition of multiwalled carbon nanotubes on the uniform distribution of TiC nanoparticles in aluminum nanocomposites, Scripta Materialia 72–73 (2014) 25–28.
- [16] W.J. Kim, Y.G. Lee, M.J. Lee, J.Y. Wang, Y.B. Park, Exceptionally high strength in Mg–3Al–1Zn alloy processed by high-ratio differential speed rolling, Scripta Materialia 65 (2011) 1105–1108.
- [17] M. Fattahi, V. Noei Aghaei, A.R. Dabiri, S. Amirkhanlou, S. Akhavan, Y. Fattahi, Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding, Materials Science and Engineering A 648 (2015) 47–50.
- [18] M. Shayan, B. Niroumand, Synthesis of A356–MWCNT nanocomposites through a novel two stage casting process, Materials Science and Engineering A 528 (2013) 262–269.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58cbb47e-9303-4705-b7ea-efc2eee9cc91