Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 19, no. 4 | 1484--1496
Tytuł artykułu

Microstructure characterization of 7055-T6, 6061-T6511 and 7A52-T6 Al alloys subjected to ballistic impact against heavy tungsten alloy projectile

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A spray formed 7055 Al alloy, and traditional formed 6061 Al and 7A52 Al alloy were subjected to extrusion. Later 7055Al and 7A52 treated with T6 and 6061 Al treated with T6511 heat treatment. To investigate the microstructure evolution by optical microscopy (OM), scanning electron microscopy (SEM), electron back scattering diffraction (EBSD) and X-rays diffraction pattern (XRD) analysis were employed to observe the variation in mechanical properties and damages patterns of single layered aluminum alloys impacted by heavy tungsten alloy (WHA) projectile. During impact a substantial increase in temperature inside the target material caused melting on crater wall. The hard metastable intermetallic compound and pores were produced on penetration path owing to diffusion of projectile particles and rapid melt re-solidification. These compounds enhance the hardness (600-650 HV0.1/10) in the middle deformed channels of 7055 Al alloy target. In addition, small size pores, whirl-pool and white adiabatic shear bands were observed in 7A52 and 6061 Al alloys, respectively. The variation in hardness and microstructure of Al alloys target was limited within the 2 mm area from the perforation path. 7055-T6 Al alloy has demonstrated better ballistic protection in terms of strength, mass efficiency (N), depth of penetration (DOP) and penetration path diameter in comparison of other Al alloys.
Wydawca

Rocznik
Strony
1484--1496
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wykr.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China, wangyangwei@bit.edu.cn
  • National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing 100081, PR China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
autor
  • State Key Laboratory of Chemical Resource Engineering, Collage of Materials Science and Engineering, BeijingUniversity of Chemical Technology, Beijing, 100029, PR China
autor
  • Institute of Advanced Materials, Bahauddin Zakariya University, 60800, Multan, Pakistan
autor
  • Department of Metallurgy and Materials Engineering CEET, University of the Punjab Lahore, Pakistan
autor
  • Jiangsu Haoran Spray Forming Alloy CO., LTD, PR China
Bibliografia
  • [1] T. Børvik, A.H. Clausen, O.S. Hopperstad, M. Langseth,Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles—experimental study, Int. J. Impact Eng.30 (4) (2004) 367–384.
  • [2] T. Demir, M. Übeyli, R.O. Yildirim, Investigation on theballistic impact behavior of various alloys against 7.62 mmarmor piercing projectile, Mater. Des. 29 (10) (2008) 2009–2016.
  • [3] A. Manes, M. Pagani, M. Saponara, D. Mombelli, C. Mapelli, M.Giglio, Metallographic characterisation of Al6061-T6aluminium plates subjected to ballistic impact, Mater. Sci.Eng. A 608 (2014) 207–220.
  • [4] T. Børvik, M.J. Forrestal, O.S. Hopperstad, T.L. Warren, M.Langseth, Perforation of AA5083-H116 aluminium plates withconical-nose steel projectiles – calculations, Int. J. Impact Eng.36 (3) (2009) 426–437.
  • [5] N. Jones, J.K. Paik, Impact perforation of aluminium alloyplates, Int. J. Impact Eng. 48 (2012) 46–53.
  • [6] M. Forrestal, Z. Rosenberg, V. Luk, S. Bless, Perforation ofaluminum plates with conical-nosed rods, J. Appl. Mech. 54(1) (1987) 230–232.
  • [7] T. Fras, L. Colard, E. Lach, A. Rusinek, B. Reck, Thick AA7020-T651 plates under ballistic impact of fragment-simulatingprojectiles, Int. J. Impact Eng. 86 (2015) 336–353.
  • [8] C. Mondal, B. Mishra, P.K. Jena, K. Siva Kumar, T.B. Bhat,Effect of heat treatment on the behavior of an AA7055aluminum alloy during ballistic impact, Int. J. Impact Eng.38 (8) (2011) 745–754.
  • [9] G. Tiwari, M.A. Iqbal, P.K. Gupta, N.K. Gupta, The ballisticresistance of thin aluminium plates with varying degrees offixity along the circumference, Int. J. Impact Eng. 74 (2014)46–56.
  • [10] P. Sharma, P. Chandel, V. Bhardwaj, M. Singh, P. Mahajan,Ballistic impact response of high strength aluminium alloy2014-T652 subjected to rigid and deformable projectiles, ThinWalled Struct. 126 (2018) 205–219.
  • [11] S. Gürgen, Impact behavior of preloaded aluminum plates atoblique conditions, Arabian J. Sci. Eng. 44 (2) (2019) 1649–1656.
  • [12] H. He, X. Wu, C. Sun, L. Li, Grain structure and precipitatevariations in 7003-T6 aluminum alloys associated with highstrain rate deformation, Mater. Sci. Eng. A 745 (2019) 429–439.
  • [13] X. Wu, L. Li, W. Liu, S. Li, L. Zhang, H. He, Development ofadiabatic shearing bands in 7003-T4 aluminum alloy underhigh strain rate impacting, Mater. Sci. Eng. A 732 (2018) 91–98.
  • [14] D.D. Showalter, B.E. Placzankis, M.S. Burkins, Ballisticperformance testing of aluminum alloy 5059-H131 and5059-H136 for armor applications, in: Army Research LabAberdeen Proving Ground MD, 2008.
  • [15] M. Fourmeau, Characterization and modelling of theanisotropic behaviour of high-strength aluminium alloy,Norwegian University of Science and Technology; ÉcoleNormale Supérieure de . . ., 2014.
  • [16] L.L. Liu, Q.L. Pan, X.D. Wang, S.W. Xiong, The effects of agingtreatments on mechanical property and corrosion behaviorof spray formed 7055 aluminium alloy, J. Alloys Compd. 735(2018) 261–276.
  • [17] X. Wang, Q. Pan, L. Liu, S. Xiong, W. Wang, J. Lai, Y. Sun, Z.Huang, Characterization of hot extrusion and heattreatment on mechanical properties in a spray formedultra-high strength Al-Zn-Mg-Cu alloy, Mater. Charact. 144(2018) 131–140.
  • [18] C. Mondal, B. Mishra, P.K. Jena, K.S. Kumar, T.B. Bhat, Effectof heat treatment on the behavior of an AA7055 aluminumalloy during ballistic impact, Int. J. Impact Eng. 38 (8-9) (2011)745–754.
  • [19] P. Jena, K. Sivakumar, R. Mandal, A. Singh, Influence of heattreatment on the ballistic behavior of AA-7017 alloy plateagainst 7.62 deformable projectiles, Procedia Eng. 173 (2017)214–221.
  • [20] H. Li, F. Cao, S. Guo, Y. Jia, D. Zhang, Z. Liu, P. Wang, S.Scudino, J. Sun, Effects of Mg and Cu on microstructures andproperties of spray-deposited Al-Zn-Mg-Cu alloys, J. AlloysCompd. 719 (2017) 89–96.
  • [21] B. Liu, Q. Lei, L. Xie, M. Wang, Z. Li, Microstructure andmechanical properties of high product of strength andelongation Al-Zn-Mg-Cu-Zr alloys fabricated by spraydeposition, Mater. Des. 96 (2016) 217–223.
  • [22] J.K. Holmen, J. Johnsen, S. Jupp, O.S. Hopperstad, T. Børvik,Effects of heat treatment on the ballistic properties of AA6070aluminium alloy, Int. J. Impact Eng. 57 (2013) 119–133.
  • [23] M.A. Khan, Y. Wang, H. Cheng, F. Nazeer, G. Yasin, M.U.Farooq, A. Malik, Z. Nazir, Ballistic behaviour of spray formedAA7055 aluminum alloy against tungsten core projectileimpact, Vacuum 159 (2019) 482–493.
  • [24] Y. Jia, F. Cao, Z. Ning, S. Guo, P. Ma, J. Sun, Influence of secondphases on mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy, Mater. Des. 40 (2012) 536–540.
  • [25] P.K. Jena, S.G. Savio, K.S. Kumar, V. Madhu, R.K. Mandal, A.K. Singh, An experimental study on the deformationbehavior of aluminium armour plates impacted by twodifferent non-deformable projectiles, Procedia Eng. 173(2017) 222–229.
  • [26] P.K. Jena, K. Sivakumar, R.K. Mandal, A.K. Singh, Influence ofheat treatment on the ballistic behavior of AA-7017 alloyplate against 7.62 deformable projectiles, Procedia Eng. 173(2017) 214–221.
  • [27] T. Børvik, M. Forrestal, O. Hopperstad, T. Warren, M.Langseth, Perforation of AA5083-H116 aluminium plateswith conical-nose steel projectiles–calculations, Int. J.Impact Eng. 36 (3) (2009) 426–437.
  • [28] T. Demir, M. Übeyli, R.O. Yildirim, Investigation on theballistic impact behavior of various alloys against 7.62 mmarmor piercing projectile, Mater. Des. 29 (10) (2008) 2009–2016.
  • [29] A. SHingweker, Ballistic performance of steel againstdoformable projectiles: a correlation with micro-structureand mechanical properties, J. Mater. Eng. Perform. (2017).
  • [30] L. Xu, M. Yan, Y. Xia, J. Peng, W. Li, L. Zhang, C. Liu, G. Chen,Y. Li, Influence of copper content on the property of Cu–Walloy prepared by microwave vacuum infiltration sintering, J.Alloys Compd. 592 (2014) 202–206.
  • [31] K. Morsi, Review: reaction synthesis processing of Ni–Alintermetallic materials, Mater. Sci. Eng. A 299 (1) (2001) 1–15.
  • [32] M. Krasnowski, S. Gierlotka, T. Kulik, Al3Ni2–Al compositeswith nanocrystalline intermetallic matrix produced byconsolidation of milled powders, Adv. Powder Technol. 25 (4)(2014) 1362–1368.
  • [33] G. Kong, J. Lu, Q. Xu, Interfacial reaction between solid nickeland liquid zinc, J. Wuhan Univ. Technol. Mater. Sci. Ed. 23 (5)(2008) 712–716.
  • [34] Z. Odanovic ́, B. Bobic ́, Ballistic protection efficiency of compositeceramics/metal armours, Sci. Tech. Rev. 53 (3) (2003) 30–38.
  • [35] Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, M.A.Meyers, Shear localization and recrystallization in dynamicdeformation of 8090 Al–Li alloy, Mater. Sci. Eng. A 299 (1)(2001) 287–295.
  • [36] Z. Xu, C. Junjia, L. Guangyao, Microstructural mechanism inadiabatic shear bands of Al-Cu alloy bars using electromagneticimpact upsetting, Mater. Lett. 194 (2017) 62–65.
  • [37] X. Zhang, J. Cui, J. Xu, G. Li, Microstructure investigations on2A10 aluminum alloy bars subjected to electromagneticimpact upsetting, Mater. Sci. Eng. A 702 (2017) 142–152.
  • [38] L. Zhao, Y. Pan, H. Liao, Q. Wang, Degassing of aluminumalloys during re-melting, Mater. Lett. 66 (1) (2012) 328–331.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58b14d39-f464-4b35-9183-08ef560c0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.