Warianty tytułu
Zróżnicowanie chemiczne wód aluwialnych dużych rzek strefy suchej na przykładzie rzeki Draa, oaza Mhamid (płd Maroko)
Języki publikacji
Abstrakty
In arid areas, with rivers functioning episodically, alluvial resources are the main source of water. Considering the intensified regulation of discharge in montane catchments, supplying the intermittent rivers, in the nearest future alluvial aquifers will gain key importance for the functioning of people in arid zones. The research aimed to investigate the diversified chemistry of alluvial waters typical of large intermittent river valleys in hot arid zones as well as to analyse processes determining the water chemistry and affecting its diversity. The detailed study, carried out in October 2015, covered the Draa river valley (1100 km total length) in the region of the Mhamid Oasis. The examined water was sampled from all wells found in the study area. Concentrations of the main cations: Ca2+, Mg2+, K+, Na+, NH4+, and Li+, anions: Cl−, SO42−, HCO3−, and NO3−, as well as trace elements: Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, and Zn, were identified. Results were analysed with statistical, hydrochemical, and geochemical modelling methods. Alluvial waters of the eastern and western part of the oasis differed in concentrations of numerous components, what resulted from the regulation of irrigation. Specific electrical conductivity showed a 3.5-fold increase, from 3800 to 13800 μS/cm, consistent with the direction of water flow in the oasis, from east to west. Even a greater rise was observed for ions: Cl− (6x), Na+ (5.5x), Mg2+ (5.0x), Ca2+, and SO42− (3.5x). Such a composition indicated multiionic hydrochemical type of waters dominated by Na+ and Cl−. Additionally, high Pearson correlation coefficients were recorded for Na+ and Cl− (0.98) as well as Mg2+ and Cl− (0.97). The saturation index suggested that the main water components originated from dissolving of minerals such as halite, anhydrite, sylvite, and gypsum. Groundwater chemistry in the Mhamid Oasis was determined mainly by geogenic processes, such as dissolving of evaporates, precipitation of carbonate minerals, and ion exchange.
Czasopismo
Rocznik
Tom
Strony
81--100
Opis fizyczny
Bibliogr. 42 poz., rys., map., wykr., tab.
Twórcy
autor
- Department of Hydrometry, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University in Poznań, ul. B. Krygowskiego 10, 61-680, Poznań, Poland, phone/fax +48 61 829 62 30, szana@amu.edu.pl
autor
- Department of Geomorphology, Faculty of Geography and Regional Studies, University of Warsaw, ul. Krakowskie Przedmieście 30, 00-927, Warszawa, Poland, phone/fax +48 22 552 06 53, dluzewski@uw.edu.pl
autor
- Department of Environmental Protection and Modelling, Faculty of Mathematics and Natural Science, Jan Kochanowski University in Kielce, ul. Świętokrzyska 15, 25-406, Kielce, Poland, phone/fax +48 41 349 64 29, rafalka@ujk.edu.pl
autor
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61-614, Poznań, Poland, phone/fax +48 61 829 15 74, pnied@amu.edu.pl
Bibliografia
- [1] Pórcel R, de León-Gómez H. Groundwater origin and its hydrogeochemistry through GIS maps in Linares Region, Mexico. J Water Resource Protect. 2013;5:1-12. DOI: 10.4236/jwarp.2013.58A001.
- [2] Boukhari K, Fakir Y, Stigter TY, Hajhouji Y, Boulet G. Origin of recharge and salinity and their role on management issues of a large alluvial aquifer system in the semi-arid Haouz plain, Morocco. Environ Earth Sci. 2015;73:6195-6212. DOI: 10.1007/s12665-014-3844-y.
- [3] Lgourna Z, Warner N, Bouchaou L, Boutaleb S, Tagma T, Hssaisoune M, et al. Nitrate contamination of alluvial groundwater in the Ziz basin, southeastern Morocco. Mor J Chem. 2014;2:447-451. https://revues.imist.ma/?journal=morjchem&page=article&op=view&path%5B%5D=2417.
- [4] Jilali A, Abbas M, Amar M, Zarhloule Y. Groundwater contamination by wastewater in Figuig Oasis (Eastern High Atlas, Morocco). Nature Environ Pollut Technol. 2015;14:275-282.http://www.neptjournal.com/upload-images/NL-52-10-(8)D-228.pdf.
- [5] Rochdane S, Reddy DV, El Mandour A. Hydrochemical and isotopic characterisation of Eastern Haouz plain groundwater, Morocco. Environ Earth Sci. 2015;73:3487-3500. DOI: 10.1007/s12665-014-3633-7.
- [6] Fekkoul A, Zarhloule Y, Boughriba M, Barkaoui A, Jilali A, Chafi A, et al. Groundwater contamination by nitrates, salinity and pesticides: case of the unconfined aquifer of Triffa Plain (Eastern Morocco). AQUA mundi. 2011;04034:123-130. http://jsrad.org/wp-content/2015/Issue%201,%202015/12%202015-2-1-59-61.pdf.
- [7] Farhat B, Mammou AB, Kouzana L, Chenini I, Podda F, De Giudici G. Groundwater chemistry of the Mornag Aquifer System in NE Tunisia. Resource Geol. 2010;60:377-388. DOI: 10.1111/j.1751-3928.2010.00142.x.
- [8] Saibi H, Mesbah M, Moulla AS, Guendouz AH, Ehara S. Principal component, chemical, bacteriological, and isotopic analyses of Oued-Souf groundwaters (revised). Environ Earth Sci. 2016;75:272. DOI: 10.1007/s12665-015-4878-5.
- [9] Dłużewski M, Kozłowski R, Szczucińska A. Potential use of alluvial groundwater for irrigation in arid zones - Mhamid Oasis (S Morocco). Ecol Chem Eng S. 2017;24(1).129-140. DOI: 10.1515/eces-2017-0010.
- [10] Belkhiri L, Mouni L, Boudoukha A. Geochemical evolution of groundwater in an alluvial aquifer: Case of El Eulma aquifer, East Algeria. J Afr Earth Sci. 2012;66-67:46-55. DOI: 10.1016/j.jafrearsci.2012.03.001.
- [11] Sowers J, Vengosh A, Weinthal E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim Change. 2011;104:599-627. DOI: 10.1007/s10584-010-9835-4.
- [12] Huebener H, Kerschgens M. Downscaling of current and future rainfall climatologies for southern Morocco, Part II: Climate change signals. Int J Climatol. 2007;27:1065-1073. DOI: 10.1002/joc.1457.
- [13] Chaponniere A, Smakhtin V. A review of climate change scenarios and preliminary rainfall trend analysis in the Oum er Rbia basin, Morocco. International Water Management Institute, Working Paper 110, Drought Series. 2006;8:23. http://www.iwmi.cgiar.org/Publications/Working_Papers/working/WOR110.pdf.
- [14] Karmaoui A, Messouli M, Yacoubi Khebiza M, Ifaadassan I. Environmental vulnerability to climate change and anthropogenic impacts in dryland (Pilot Study: Middle Draa Valley, South Morocco). Earth Sci Climatic Change. 2014;S11:002. DOI: 10.4172/2157-7617.S11-002. DOI: 10.4172/2157-7617.S11-002.
- [15] Busche H. Hydrology of the Draa Basin. In: Schulz O, Judex M, editors. Impetus Atlas Morocco: Research Results 2000-2007, 3rd ed. Department of Geography, University of Bonn, Germany. 2008:43-44. http://www.impetus.uni-koeln.de/en/impetus-atlas/impetus-atlasmorocco.html.
- [16] Warner N, Lgourna Z, Bouchaou L, Boutaleb S, Tagma T, Hsaissoune M, et al. Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Appl Geochem. 2013;34:140-151. DOI: 10.1016/j.apgeochem.2013.03.005.
- [17] Schulz O, Busche H, Benbouziane ADRPE. Inflows and outflows of the Mansour Eddahbi reservoir. Data. Morocco. 2004. Decadal Precipitation Variances and Reservoir Inflow in the Semi-Arid Upper Drâa Basin (South-Eastern Morocco). In: Zereini F, Hötzl H, editors. Climatic Changes and Water Resources in the Middle East and North Africa. Berlin Heidelberg: Springer-Verlag; 2008. ISBN: 9783540850465.
- [18] Carrillo-Rivera JJ, Ouysse S, Hernández-Garcia GJ. Integrative approach for studying water sources and their vulnerability to climate change in semi-arid regions (Drâa Basin, Morocco). Int J Water Resources Arid Environ. 2013;2:26-36. http://www.psipw.org/attachments/article/339/IJWRAE_2(1)26-36.pdf.
- [19] Dłużewski M, Krzemień K. Physical Geography of the Coude du Draa Region. In: Skiba S, Krzemień K, editors. Contemporary Evolution of the Natural Environment of the Region between Antiatlas and Sahara (Morocco). Prace Geograficzne IGiGP UJ. 2008;118:23-36. http://www.geo.uj.edu.pl/publikacje,000121?&menu=3&nr=pg11803&brf=summary.
- [20] Timm NH. Applied Multivariate Analysis. New York: Springer-Verlag; 2002. DOI: 10.1007/b98963.
- [21] Härdle WK, Simar L. Applied Multivariate Statistical Analysis. Berlin Heidelberg: Springer-Verlag; 2003. ISBN: 9783662058022.
- [22] Pipper AM. A graphic procedure in geochemical interpretation of water analyses. Am Geophys Union Trans. 1944;25:914-923. DOI: 10.1029/TR025i006p00914.
- [23] Hem JD. Study and interpretation of chemical characteristic of natural water. U.S. Geological Survery Water-Supply Pper. 1985;2254:263. https://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf.
- [24] Parkhurst DL, Appelo CAJ. User’s guide to PHREEQC (ver. 2) A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, the Water Resources Investment, Rept. 1999;99:4259. ftp://brrftp.cr.usgs.gov/pub/dlpark/geochem/pc/phreeqc/manual.pdf.
- [25] Ciaccio LL. Water and Water Pollution. 1st ed. New York: Marcel Dekker Incorporated; 1971. ISBN: 9780824711184.
- [26] Ma JZ, Wang XS, Edmunds WM. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China - a case study of the Shiyang River Basin. J Arid Environ. 2005;61:277-295. DOI: 10.1016/j.jaridenv.2004.07.014.
- [27] Vanderzalm JL, Jeuken BM, Wischusen JDH, Pavelic P, Le Gal La Salle C, Knapton A, et al. Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia. J Hydrol. 2011;397:71-82. DOI: 10.1016/j.jhydrol.2010.11.035.
- [28] Brins N, Boudoukha A. Statistical and hydrochemical groundwater’s classification of the plain El-Outaya. Biskra-Algeria. Courrier de Savoir. 2011;11:41-46. http://revues.univ-biskra.dz/index.php/cds/article/view/463.
- [29] Brahim AY, Benkaddour A, Agoussine M, Ait Lemkademe A, Yacoubi LA, Bouchaou L. Origin and salinity of groundwater from interpretation of analysis data in the mining area of Oumjrane, Southeastern Morocco. Environ Earth Sci. 2015;74:4787-4802. DOI: 10.1007/s12665-015-4467-7.
- [30] Bouchaou L, Michelot JL, Vengosh A, Hsissoua Y, Qurtobi M, Gaye CB, et al. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. J Hydrol. 2008;352:267-287. DOI: 10.1016/j.jhydrol.2008.01.022.
- [31] Matter JM, Waber HN, Loew S, Matter A. Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman. Hydrogeol J. 2005;14:203-224. DOI: 10.1007/s10040-004-0425-2.
- [32] Dłużewski M, Gierszewski P, Michno A, Sobczak K, Biejat K. The influence of the morphological processes on agriculture development in mountains Valley in semiarid areas. Int J Environ Water. 2012;3:30-47. http://ijew.ewdr.org/component/k2/item/35-the-influence-of-the-morphological-processes-on-agriculturedevelopment-in-mountain-valleys-in-semiarid-areas.html.
- [33] Andrade A, Stigter TY. Hydrogeochemical controls on shallow alluvial groundwater under agricultural land: case study in central Portugal. Environ Earth Sci. 2011;63:809-825. DOI: 10.1007/s12665-010-0752-7.
- [34] Ettayfi N, Bouchaou L, Michelot JL, Tagma T, Warner N, Boutaleb S, et al. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constrains for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco. J Hydrol. 2012;438-439:97-111. DOI: 10.1016/j.jhydrol.2012.03.003.
- [35] Laftouhi N, Vanclooster M, Jalal M, Witam O, Aboufirassi M, Bahir M, et al. Groundwater nitrate pollution in the Essaouira Basin (Morocco). Comptes Rendus Geosci. 2003;335:307-317. DOI: 10.1016/S1631-0713(03)00025-7.
- [36] Jilali A, Zarhloue Y, Georgiadis M. Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: application of DRASTIC and AVI methods. Arab J Geosci. 2015;8(3):1611-1621. DOI: 10.1007/s12517-014-1320-3.
- [37] Golchin I, Moghaddam MA. Hydro-geochemical characteristics and groundwater quality assessment in Iranshahr plain aquifer, Iran. Environ Earth Sci. 2016;75:317. DOI 10.1007/s12665-015-5077-0.
- [38] Jalali M. Groundwater geochemistry in the Alisadr, Hamadan, Western Iran. Environ Monit Assess. 2009;166:359-369. DOI: 10.1007/s10661-009-1007-5.
- [39] Thakur T, Rishi M.S, Naik PK, Sharma P. Elucidating hydrochemical properties of groundwater for drinking and agriculture in parts of Punjab, India. Environ Earth Sci. 2016;75:467. DOI: 10.1007/s12665-016-5306-1.
- [40] Christian WJ, Hopenhayn C, Centeno JA, Todorov T. Distribution of urinary selenium and arsenic among pregnant women exposed to arsenic in drinking water. Environ Res. 2006;100:115-122. DOI: 10.1016/j.envres.2005.03.009.
- [41] Thundiyil JG, Yuan J, Smith AH, Steinmaus C. Seasonal variation of arsenic concentration in wells in Nevada. Environ Res. 2007;104:367-373. DOI: 10.1016/j.envres.2007.02.007.
- [42] Tagma T, Hsissou Y, Bouchaou L, Bouragba L, Boutaleb S. Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco). Afr J Environ Sci Technol. 2009;3:301-309. DOI: 10.5897/AJEST09.076.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58acdbdd-7830-4d26-822a-15afea765abb