Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, nr 10 | 242--251
Tytuł artykułu

The Influence of Pretreatment and Post Treatment with Alkaline Activators on the Adsorption Ability of Biochar from Palm Oil Empty Fruit

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Empty oil palm bunches (EFB) can be converted by hydrothermal carbonation process into biochar that can be used as low-cost adsorbent. This study aims to identify the effects of pretreatment and post-treatment using alkaline activators on the biochar characteristics produced from EFB. The activation process was carried out before and after pyrolysis by heating it using an autoclave at 121 °C for 90 minutes. Biochar was then soaked using NaOH or KOH with a concentration of 0%, 4%, 8% and 12% for 3h. The ability of biochar as an adsorbent was analyzed for its ability to absorb iodine and methylene blue. Iodine absorption analysis was carried out using the Titrimetric method, while the methylene blue absorption test was carried out using the Spectrophotometric method. Results of the analysis showed that the absorption capacity of the resulting biochar for iodine ranged from 208.86–616.32 mg/g, and the absorption capacity of biochar for methylene blue ranged from 62.53–81.11 mg/g.
Wydawca

Rocznik
Strony
242--251
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Agroindustrial Technology, Faculty of Agricultural Technology, IPB University, Raya Darmaga Streat, 16680, Bogor West Jawa, Indonesia
  • Department of Agroindustrial Technology, Faculty of Agricultural Technology, IPB University, Raya Darmaga Streat, 16680, Bogor West Jawa, Indonesia
  • Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung. Prof Dr Sumantri Brojonegoro streat, 35142, Bandar Lampung, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology. Dayang Sumbi streat, 40132, Bandung West Java, Indonesia
autor
  • Department of Agroindustrial Technology, Faculty of Agricultural Technology, IPB University, Raya Darmaga Streat, 16680, Bogor West Jawa, Indonesia, suprihatin@apps.ipb.ac.id
Bibliografia
  • 1. Cantrell K.B., Hunt P.G., Uchimiya M., Novak J.M., Ro K.S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol., 107, 419–428. DOI: 10.1016/J.BIORTECH.2011.11.084.
  • 2. Crombie K., Mašek O., Sohi S.P., Brownsort P., Cross A. 2013. The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5(2), 122–131. DOI: 10.1111/gcbb.12030.
  • 3. Desi, Suharman A., Vinsiah R. 2015. The effect of carbonisation temperature variation to the adsorption ability of rubber fruit shell activated carbon (in Indonesian). Pros SEMIRATA 2015., siap terbit.
  • 4. Do T.H., Nguyen V.T., Dung N.Q., Chu M.N., Van Kiet D., Ngan T.T.K., Van Tan L. 2021. Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf. Mater Today Proc. 38, 3405–3413. doi:10.1016/J.MATPR.2020.10.834.
  • 5. Domingues RR, Trugilho PF, Silva CA, A ICN, Melo CA, Magriotis ZM, Sa MA, Melo D. 2017. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. June. doi:10.1371/journal.pone.0176884.
  • 6. Febriyanti F, Fadila N, Sanjaya AS, Bindar Y, Irawan A. 2019. Utilization of empty palm oil bunch waste into bio-char, bio-oil and gas by pyrolysis method (in Indonesian). J Chemurg. 3(2). doi:10.30872/cmg.v3i2.3578.
  • 7. Foo KY, Hameed BH. 2011. Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination. 275(1–3) 302–305. doi:10.1016/j.desal.2011.03.024.
  • 8. Guo Z, Bian X, Zhang J, Liu H, Cheng C, Zhang C, Wang J. 2014. Activated carbons with well-developed microporosity prepared from Phragmites australis by potassium silicate activation. J Taiwan Inst Chem Eng. 45(5), 2801–2804. doi:10.1016/J.JTICE.2014.07.017.
  • 9. Hussein M.Z., Ahmad F.B.H. 2007. Adsorption of methylene blue onto treated activated carbon adsoption of methylene blue onto treated activated. Malaysian J Anal Sci. 11(11), 400–406.
  • 10. Iskandar T, Rofiatin U. 2017. Biochar Characteristics Based On Biomass Types And Pyrolysis Process Parameters (in Indonesian). J Tek Kim. 12(1), 28–34. doi:10.33005/tekkim.v12i1.843.
  • 11. Jamari SS, Howse JR. 2012. The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass and Bioenergy. 47, 82–90. doi:10.1016/j.biombioe.2012.09.061.
  • 12. Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip SN, Syed-Hassan SSA, Yousif E, Sabar S. 2021. Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Sci Technol. 84(8), 1858–1872. doi:10.2166/wst.2021.355.
  • 13. Jin Y, Liang X, He M, Liu Y, Tian G, Shi J. 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere. 142, 128–135. doi:10.1016/J.CHEMOSPHERE.2015.07.015.
  • 14. Karunanithi R, Ok YS, Dharmarajan R, Ahmad M, Seshadri B, Bolan N, Naidu R. 2017. Sorption, kinetics and thermodynamics of phosphate sorption onto soybean stover derived biochar. Environ Technol Innov. 8, 113–125. doi:10.1016/J.ETI.2017.06.002.
  • 15. Kong JJ, Yue QY, Zhao P, Gao BY, Li Q, Wang Y, Ngo HH, Guo WS. 2015. Comparative study on microstructure and surface properties of keratin- and lignocellulosic-based activated carbons. Fuel Process Technol. 140, 67–75. doi:10.1016/J.FUPROC.2015.08.025.
  • 16. Kresnawaty I, Putra SM, Budiani A, Darmono T. 2018. Conversion of palm oil empty bunches (EFB) into bio charcoal and liquid smoke (in Indonesian). J Penelit Pascapanen Pertan. 14(3). doi:10.21082/jpasca.v14n3.2017.171-179.
  • 17. Laos LE, Masturi M, Yulianti I. 2016. The Effect of Activation Temperature on the Absorption of Activated Carbon in Candlenut Shells. Proc Natl Semin Phys. V. 135–140. doi:10.21009/0305020226.
  • 18. Mia S, Singh B, Dijkstra FA. 2017. Aged biochar affects gross nitrogen mineralization and recovery: a 15N study in two contrasting soils. Glob Chang Biol Bioenergy., siap terbit. [diakses 2023 Agu 2]. https://www.cabdirect.org/cabdirect/abstract/20183212529.
  • 19. Nurlia N, Anas M, Erniwati E. 2020. Analysis of Variation of Activation Temperature on the Crystalline Structure of Activated Charcoal from Palm Bunches (Arenga Pinnata Merr) With Potassium Silicate (K2SiO3) Activating Agent (in Indonesian). J Penelit Pendidik Fis. 5(4), 221–226. doi:10.36709/jipfi.v5i4.14106.
  • 20. Paramitadevi Y V., Rahmatullah. 2017. Technical problems of wastewater treatment plant in crude palm oil industry A case study in PT Socfin Indonesia-Kebun Sungai Liput, Nang groe Aceh Darussalam Province. Di dalam: IOP Conference Series: Earth and Environmental Science. Volume ke-65.
  • 21. Prapagdee S, Piyatiratitivorakul S, Petsom A, Tawinteung N. 2014. Application of biochar for enhancing cadmium and zinc phytostabilization in vigna radiata L. cultivation. Water Air Soil Pollut. 225(12). doi:10.1007/s11270-014-2233-1.
  • 22. Raju M, Tambunan A, Setiawan R. 2016. Characterization of charcoal and pyrolysis gases of palm oil waste (in Indonesian). J Keteknikan Pertan. 4(2).
  • 23. Ray A, Banerjee A, Dubey A. 2020. Characterization of Biochars from Various Agricultural By-Products Using FTIR Spectroscopy, SEM focused with image Processing. Int J Agric Environ Biotechnol. 13(4). doi:10.30954/0974-1712.04.2020.6.
  • 24. Saelee K, Yingkamhaeng N, Nimchua T, Sukyai P. 2014. The 6 Extraction and Characterization of cellulose from sugarcane bagasse by using environmental friendly method. 26th Annu Meet Thai Soc Biotechnol Int Conf., siap terbit.
  • 25. Samsuri AW, Sadegh-Zadeh F, Seh-Bardan BJ. 2014. Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int J Environ Sci Technol. 11(4). doi:10.1007/s13762-013-0291-3.
  • 26. Sari NA, Ishak CF, Bakar RA. 2014. Characterization of oil palm empty fruit bunch and rice husk biochars and their potential to adsorb arsenic and cadmium. Am J Agric Biol Sci. 9(3). doi:10.3844/ajabssp.2014.450.456.
  • 27. Shaaban A, Se SM, Dimin MF, Juoi JM, Mohd Husin MH, Mitan NMM. 2014. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J Anal Appl Pyrolysis. 107, 31–39. doi:10.1016/J.JAAP.2014.01.021.
  • 28. Shariff A, Aziz NSM, Abdullah N. 2014. Slow Pyrolysis of Oil Palm Empty Fruit Bunches for Biochar Production and Characterisation. J Phys Sci. 25(2). doi:10.5281/zenodo.4319307.
  • 29. Sidik DAB, Hairom NHH, Mohammad AW. 2019. Performance and fouling assessment of different membrane types in a hybrid photocatalytic membrane reactor (PMR) for palm oil mill secondary effluent (POMSE) treatment. Process Saf Environ Prot. 130. doi:10.1016/j.psep.2019.08.018.
  • 30. Tag AT, Duman G, Ucar S, Yanik J. 2016. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis. 120:200–206. doi:10.1016/j.jaap.2016.05.006.
  • 31. Tamrin KF, Zahrim AY. 2017. Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA). Environ Sci Pollut Res. 24(19). doi:10.1007/s11356-016-8235-3.
  • 32. Thoe JML, Surugau N, Chong HLH. 2019. Application of Oil Palm Empty Fruit Bunch as Adsorbent : A Review. Trans Sci Technol. 6(1):9–26.
  • 33. Tiara ES, Susanto Ginting A, Setiawan RPA, Joelianingsih J, Tambunan AH. 2019. Exergy Analysis on Pyrolysis Process of Oil Palm Empty Fruit Bunch. Di dalam: IOP Conference Series: Materials Science and Engineering. Volume ke-557.
  • 34. Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 19(1):191–215. doi:10.1007/s11157-020-09523-3.
  • 35. Yavari Saba, Malakahmad A, Sapari NB, Yavari Sara. 2017. Synthesis optimization of oil palm empty fruit bunch and rice husk biochars for removal of imazapic and imazapyr herbicides. J Environ Manage. 193. doi:10.1016/j.jenvman.2017.02.035.
  • 36. Zama EF, Zhu YG, Reid BJ, Sun GX. 2017. The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. J Clean Prod. 148, 127–136. doi:10.1016/J.JCLEPRO.2017.01.125.
  • 37. Zamani SA, Yunus R, Samsuri AW, Salleh MAM, Asady B. 2017. Removal of Zinc from Aqueous Solution by Optimized Oil Palm Empty Fruit Bunches Biochar as Low Cost Adsorbent. Bioinorg Chem Appl. 2017. doi:10.1155/2017/7914714.
  • 38. Zhao S, Ta N, Wang X. 2017. Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58ab9826-7981-41b8-be9f-75c3f1eb937f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.