Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | R. 22, nr 1 | 3--15
Tytuł artykułu

Modelling of linear elasticity and viscoelasticity of thermosets and unidirectional glass fibre-reinforced thermoset-matrix composites. Part 1, Theory of modelling

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents advanced analytical modelling of the linear elasticity and viscoelasticity of thermosets and unidirectional long glass fibre-reinforced thermoset-matrix (UFRT) composites. New non-aging materials fully relaxed after the curing and post-curing processes are considered. Quasi-static long-term isothermal reversible viscoelastic processes under normal conditions are modelled. The thermosets are isotropic materials with viscoelastic shear strains and elastic bulk strains, and the fibres are isotropic and elastic. New rheological models for thermosets and UFRT composites, described by the smallest possible number of material constants, are developed. The viscoelastic generic function for shear/quasi-shear stresses is assumed as the Mittag-Leffler fractional exponential function in an integral form. The thermoset is described by two elastic and three viscoelastic parameters. The homogenized UFRT composite is described by five elastic and five viscoelastic parameters. Conjugated/unconjugated standard/inverse constitutive equations of the linear elasticity/elasticity-viscoelasticity governing thermosets and UFRT composites are formulated. The equations are mutually analytically transformable.
Wydawca

Rocznik
Strony
3--15
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Institute of Technology, Jan Grodek State University in Sanok, ul. A. Mickiewicza 21, 38-500 Sanok, Poland
Bibliografia
  • [1] Daniel I.M., Ishai O., Engineering Mechanics of Composite Materials, Oxford University Press, New York-Oxford 1994.
  • [2] Zobeiry N., Vaziri R., Poursartip A., Differential implementation of the viscoelastic response of a curing thermoset matrix for composites processing, Journal of Engineering Materials and Technology-Transactions of the ASME 2006, 128(1), 90-95, DOI: 10.1115/1.2148421.
  • [3] Patham B., Multiphysics simulations of cure residual stresses and springback in a thermoset resin using a viscoelastic model with cure-temperature-time superposition, Journal of Applied Polymer Science 2013, 129(3), 983-998, DOI: 10.1002/app.38744.
  • [4] Zobeiry N., Malek S., Vaziri R., Poursartip A., A differentia approach to finite element modelling of isotropic and transversely isotropic viscoelastic materials, Mechanics of Materials 2016, 97, 76-91, DOI: 10.1016/j.mechmat.2016.02.013.
  • [5] Li D., Li X., Dai J., Process modelling of curing process-induced internal stress and deformation of composite laminate structure with elastic and viscoelastic models, Applied Composite Materials 2018, 25(3), 527-544, DOI: 10.1007/s10443-017-9633-5.
  • [6] Pallicity T.D., Böhlke T., Effective viscoelastic behavior of polymer composites with regular periodic microstructures, International Journal of Solids and Structures 2021, 216, 167-181, DOI: 10.1016/j.ijsolstr.2021.01.016.
  • [7] Wang Y., Belnoue J.P.-H., Ivanov D.S., Hallett S.R., Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregs, Composites Part A 2021, 146, Art. 106400, DOI: 10.1016/j.compositesa.2021.106400.
  • [8] Schapery R.A., On the characterization of nonlinear visco-elastic materials, Polymer Engineering Science 1969, 9, 295-310.
  • [9] Ferry J.D., Viscoelastic Properties of Polymers, John Wiley & Sons Inc., New York 1970.
  • [10] Rabotnov J.N., Elements of mechanics of viscoelastic solids [in Russian], Nauka Press, Moscow 1977.
  • [11] Aboudi J., Micromechanical characterization of the non-linear viscoelastic behaviour of resin matrix composites, Composites Science and Technology 1990, 38(4), 371-386.
  • [12] Zaoutsos S.P., Papanicolaou G.C., Cardan A.H., On the-non-linear viscoelastic behaviour of polymer-matrix composites, Composites Science and Technology 1998, 58, 883-889, DOI: 10.1016/S0266-3538(97)00195-4.
  • [13] Papanicolaou G.C., Zaoutsos S.P., Cardon A.H., Further development of a data reduction method for the nonlinear viscoelastic characterization of FRPs, Composites Part A 1999, 30(7), 839-848, DOI: 10.1016/S1359-835X(99)00004-4.
  • [14] Kontou E., Tensile creep behavior of unidirectional glass-fiber polymer composites, Polymer Composites 2005, 26(3), 287-292, DOI: 10.1002/pc.20098.
  • [15] Starkova O., Aniskevich A., Limits of linear viscoelastic behavior of polymers, Mechanics of Time-Dependent Materials 2007, 11(2), 111-126, DOI: 10.1007/s11043-007-9036-3.
  • [16] Haj-Ali R., Muliana A., A micro-to-meso sublaminate model for the viscoelastic analysis of thick-section multi-layered FRP composite structures, Mechanics of Time-Dependent Materials 2008, 12(1), 69-93, DOI: 10.1007/s11043-007-9041-6.
  • [17] Muliana A.H., Sawant S., Responses of viscoelastic polymer composites with temperature and time dependent constituents, Acta Mechanica 2009, 204(3), 155-173, DOI: 10.1007/s00707-008-0052-4.
  • [18] Ascione L., Berardi V.P., D'Aponte A., a viscoelastic constitutive law for FRP materials, International Journal of Computational Methods in Engineering Science and Mechanics 2011, 12(5), 225-232, DOI: 10.1080/15502281003660211.
  • [19] Falahatgar S.R., Salehi M., Nonlinear viscoelastic response of unidirectional polymeric laminated composite plates under bending loads, Applied Composite Materials 2011, 18(6), 471-483, DOI: 10.1007/s10443-011-9212-0.
  • [20] Spathis G., Kontou E., Creep failure time prediction of polymers and polymer composites, Composites Science and Technology 2012 72, 959-964, DOI: 10.1016/j.compscitech.2012.03.018.
  • [21] Jeon J., Kim J., Muliana A., Modeling time-dependent and inelastic response of fiber reinforced polymer composites, Computational Materials Science 2013, 70, 37-50, DOI:10.1016/j.commatsci.2012.12.022.
  • [22] Müller S., Kästner M., Brummund J., Ulbricht V., On the numerical handling of fractional viscoelastic material models in a FE analysis, Computational Mechanics 2013, 51(6), 999-1012, DOI: 10.1007/s00466-012-0783-x.
  • [23] Zhang X., Huang Q., Chen J., Li Z., Prediction of viscoelastic behavior of unidirectional polymer matrix composites, Journal of Wuhan University of Technology: Materials Science Edition 2016, 31(3), 695-699, DOI: 10.1007/s11595-016-1431-7.
  • [24] Kotelnikova-Weiler N., Baverel O., Ducoulombier N., Caron J.-F., Progressive damage of a unidirectional composite with a viscoelastic matrix, observations and modelling, Composite Structures 2018, 188, 297-312, DOI: 10.1016/j.compstruct.2017.12.067.
  • [25] Cardoso D.C.T., Harries K.A., A viscoelastic model for time-dependent behavior of pultruded GFRP, Construction and Building Materials 2019, 208, 63-74, DOI: 10.1016/j.conbuildmat.2019.02.155.
  • [26] Monticeli F.M., dos Reis A.K., Neves R.M., Santos L.F.D., Botelho E.C., Ornaghi H.L., Statistical analysis of creep behavior in thermoset and thermoplastic composites reinforced with carbon and glass fibers, Journal of Strain Analysis for Engineering Design 2021, 56(7), 452-461, DOI: 10.1177/0309324720976637.
  • [27] Sejnoha M., Valentova S., Vorel J., Padevet P., Sedlaček R., Tomkova B., Novotna J., Modeling of viscoelastic response of unidirectional fibrous composites made of basalt and carbon fibers, WIT Transactions on the Built Environment 2020, 196, 19-29.
  • [28] Nunes S.G., Saseendran S., Joffe R., Amico S.C., Fernberg P., Varna J., On temperature-related shift factors and master curves in viscoelastic constitutive models for thermoset polymers, Mechanics of Composite Materials 2020, 56(5), 573-590, DOI: 10.1007/s11029-020-09905-2.
  • [29] Berardi V.P., Perrella M., Armentani E., Cricrì G., Experimental investigation and numerical modeling of creep response of glass fiber reinforced polymer composites, Fatigue & Fracture of Engineering Materials & Structures 2021, 44(4), 1085-1095, DOI: 10.1111/ffe.13415.
  • [30] Wilczynski A., Klasztorny M., Determination of complex compliances of fibrous polymeric composites, Journal of Composite Materials 2000, 34(1), 2-26, DOI: 10.1177/002199830003400101.
  • [31] Klasztorny M., Wilczynski A.P., Constitutive equations of viscoelasticity and estimation of viscoelastic parameters of unidirectional fibrous polymeric composites, Journal of Composite Materials 2000, 34(19), 1624-1639, DOI: 10.1106/K8KV-7NEN-5Q04-G217.
  • [32] Klasztorny M., Wilczynski A.P., Witemberg-Perzyk D., A rheological model of polymeric materials and identification of its parameters, Journal of Theoretical and Applied Mechanics 2001, 39(1), 13-32.
  • [33] Wilczynski A.P., Klasztorny M., Modelling of fibrous polymeric composites in the viscoelastic range [in Polish], Kompozyty (Composites) 2002, 2(3), 97-102.
  • [34] Klasztorny M., Gieleta R., Modelling of viscoelastic resins as matrices of fibre-reinforced polymeric composites [in Polish], Kompozyty (Composites) 2002, 2(3), 103-107.
  • [35] Klasztorny M., Gieleta R., The HWKK rheological model for resins, Journal of Theoretical and Applied Mechanics 2002, 40(3), 939-960.
  • [36] Klasztorny M., Constitutive modelling of resins in compliance domain, Mechanics of Composite Materials 2004, 40(4), 349-358, DOI: 10.1023/B:MOCM.0000039751.74145.63.
  • [37] Klasztorny M., Constitutive modelling of resins in stiffness domain, Mechanics of Composite Materials 2004, 40(5), 443-452, DOI: 10.1023/B:MOCM.0000047235.48540.fc.
  • [38] Klasztorny M., Numerical simulation of rheological processes in hardening plastics under stress control, Mechanics of Composite Materials 2007, 43(2), 133-140, DOI: 10.1007/s11029-007-0014-2.
  • [39] Klasztorny M., Nycz D.B., Bogusz P., Rheological effects in in-plane shear test and in-plane shear creep test on glass-vinyl-ester lamina, Composites Theory and Practice 2020, 20(1), 35-42.
  • [40] Klasztorny M., Nycz D.B., Modelling of linear elasticity and viscoelasticity of thermosets and unidirectional glass fibre-reinforced thermoset-matrix composites – Part 2: Homogenization and numerical analysis, Composites Theory and Practice 2022,22,1, 25-39.
  • [41] Klasztorny M., Coupled and uncoupled constitutive equations of linear elasticity and viscoelasticity of orthotropic materials, Journal of Theoretical and Applied Mechanics 2008, 46(1), 3-20.
  • [42] Wilczynski A.P., Fibrous Polymeric Composites [in Polish], WNT Press, Warsaw 1996.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58956d4f-9adc-4e27-aa54-5526a63e3d16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.