Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 4 | 139--150
Tytuł artykułu

Evaluation of flow resistance increase due to fouling in cooling channels: a case study for rapid injection molding

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After certain time of operation, the cross-section of cooling channels in injection molds may decrease due to fouling, i.e. the formation and growth of a layer of sediment on the walls of the channels. This phenomenon can decrease heat transfer or ultimately completely block the flow of coolant in the channel. The build-up of the sediment layer increases the temperature of the mold, which may consequently reduce the quality of the plastic products. In the paper, the pressure drop in a typical cooling channel of an injection mold is investigated, as well as the effect of the sediment layer on the coolant flow in an example channel with a diameter of 10 mm. A novelty is the developed analytical model that allows determining the pressure drop in the case when two perpendicular channels do not intersect centrally due to manufacturing inaccuracies that often happen when drilling long channels in hard materials. The proposed hydraulic model allows for calculation of the coolant pressure drop in real injection molds and can be an alternative to time-consuming CFD simulations. The presented results of measurements and the hydraulic model calculations show that the thickness of the sediment layer in the tested channel of the actual injection mold can be up to 1.7 mm. The hydraulic model proposed in this work allows for the estimation of the thickness of the sediment layer and the identification of places of local increase in the coolant velocity, where self-cleaning of the channels in injection molds may take place.
Wydawca

Rocznik
Strony
139--150
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Józefa Fiszera 14, 80-231, Gdańsk, Poland, tprzybylinski@imp.gda.pl
  • Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Józefa Fiszera 14, 80-231, Gdańsk, Poland, atomaszewski@imp.gda.pl
  • Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Józefa Fiszera 14, 80-231, Gdańsk, Poland, krzemian@imp.gda.pl
  • CBRTP SA – Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645, Warsaw, Poland
  • Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Józefa Fiszera 14, 80-231, Gdańsk, Poland, rk@imp.gda.pl
  • Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Józefa Fiszera 14, 80-231, Gdańsk, Poland, prolka@imp.gda.pl
  • CBRTP SA – Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645, Warsaw, Poland, grzegorz.sapeta@cbrtp.pl
  • CBRTP SA – Research and Development Center of Technology for Industry, Ludwika Waryńskiego 3A, 00-645, Warsaw, Poland, robert.socha@cbrtp.pl
Bibliografia
  • 1. Muszyński P, Mrozek K, Poszwa P. Selected methods of injection molds cooling. Mechanik. 2016 Sep;(8-9):996–1000. https://doi:10.17814/mechanik.2016.8-9.332
  • 2. White JL. Principles of Polymer Engineering Rheology. John Wiley & Sons. January 1991. ISBN 978-0471853626.
  • 3. Poszwa P, Szostak M. Influence of scale deposition on maintenance of injection molds. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2018; 20(1):39–45. http://dx.doi.org/10.17531/ein.2018.1.6
  • 4. Søgaard E. Injection Molded Self-Cleaning Surfaces. DTU Nanotech. Denmark, 2014. PhD Thesis.
  • 5. Lalot S. On-Line Detection of Fouling in a Water Circulating Temper-ature Controller (WCTC) Used in Injection Moulding: Part 1: Princi-ples. Applied Thermal Engineering. 2006; 26(11-12): 1087-1094. https://doi.org/10.1016/j.applthermaleng.2005.11.010
  • 6. Lalot S. On-Line Detection of Fouling in a Water Circulating Temper-ature Controller (WCTC) Used in Injection Moulding. Part 2: Applica-tion. Applied Thermal Engineering. 2006; 26(11-12): 1095-1105. https://doi.org/10.1016/j.applthermaleng.2005.11.024
  • 7. Zettler HU, Weiss M, Zhao Q, Müller-Steinhagen H. Influence of Surface Properties and Characteristics on Fouling in Plate Heat Ex-changers. Heat Transfer Engineering. 2005;26(2):3-17. https://doi.org/10.1080/01457630590897024
  • 8. Li J, Liu W, Xia X, Zhou H, Jing L, Peng X, Jiang S. Reducing the Burn Marks on Injection-Molded Parts by External Gas-Assisted In-jection Molding. Polymers. 2021; 13: 4087. https://doi.org/10.3390/polym13234087
  • 9. Vojnová E. The Benefits of a Conformal Cooling Systems the Molds in Injection Molding Process. Procedia Engineering. 2016; 149: 535-543. https://doi.org/10.1016/j.proeng.2016.06.702
  • 10. Guilong W, Guoqun Z, Huiping L, Yanjin G. Analysis of Thermal Cycling Efficiency Optimal Design of Heating/Cooling Systems for Rapid Heat Cycle Injection Molding Process. Mater Design. 2010; 31: 3426-3441. https://doi.org/10.1016/j.matdes.2010.01.042
  • 11. Dimla D., Camilotto M., Miani F. Design and Optimisation of Confor-mal Cooling Channels in Injection Moulding Tools. Journal of Materi-als Processing Technology. 2005;164-165:1294-300. https://doi.org/10.1016/j.jmatprotec.2005.02.162
  • 12. Chen SC, Lin YW, Chien RD, Li HM. Variable Mold Temperature to Improve Surface Quality of Microcellular Injection Molded Parts Us-ing Induction Heating Technology. Advances in Polymer Technology. 2008; 27(4):224-232. https://doi.org/10.1002/adv.20133
  • 13. Kuo CC, Jiang ZF, Lee JH. Effects of Cooling Time of Molded Parts on Rapid Injection Molds with Different Layouts and Surface Rough-ness of Conformal Cooling Channels. The International Journal of Advanced Manufacturing Technology. 2019;103(5-8):2169–82. https://doi.org/10.1007/s00170-019-03694-2
  • 14. Kurt M, Kaynak Y, Kamber OS, Mutlu B, Bakir B, Koklu U. Influence of Molding Conditions on The Shrinkage and Roundness of Injection Molded Parts. The International Journal of Advanced Manufacturing Technology. 2009 ;46(5-8):571-8. https://doi.org/10.1007/s00170-009-2149-x
  • 15. Jafairan AR, Shakeri M. Investigating the Influence of Different Process Parameters on Shrinkage of Injection-Molding Parts. Ameri-can Journal of Applied Sciences. 2005;2(3):688-700. https://doi.org/10.3844/ajassp.2005.688.700
  • 16. Choi DS, Im YT. Prediction of Shrinkage and Warpage in Considera-tion of Residual Stress in Integrated Simulation of Injection Molding. Composite Structures. 1999;47(1-4):655–65. https://doi.org/10.1016/S0263-8223(00)00045-3
  • 17. Kovacs JG, Szabo F, Kovacs NK, Suplicz A, Zink B, Tabi T, Hargitai H. Thermal Simulations Measurements for Rapid Tool Inserts in In-jection Molding Applications. Applied Thermal Engineering. 2015; 85:44-51. http://dx.doi.org/10.1016/j.applthermaleng.2015.03.075
  • 18. Shayfull Z, Sharif S, Zain AM, Ghazali MF, Saad RM. Potential of Conformal Cooling Channels in Rapid Heat Cycle Molding: A review. Advances in Polymer Technology. 2014; 33(1):21381. https://doi.org/10.1002/adv.21381
  • 19. Xu XR, Sachs E, Allen S. The Design of Conformal Cooling Chan-nels in Injection Molding Tooling. Polymer Engineering & Science. 2001;41(7):1265–79. https://doi.org/10.1002/pen.10827
  • 20. Park HS, Pham NH. Design of Conformal Cooling Channels for an Automotive Part. Int J Automotive Technology. 2009;10(1):87-93. https://doi.org/10.1007/s12239-008-0011-7
  • 21. Li CG, Li CL. Plastic Injection Mould Cooling System Design by Configuration Space Method. Computer-Aided Design. 2008; 40(3):334–49. https://doi.org/10.1016/j.cad.2007.11.010
  • 22. Torres-Alba A, Mercado-Colmenero JM, Diaz-Perete D, Martin-Doñate C. A New Conformal Cooling Design Procedure for Injection Moulding Based on Temperature Clusters and Multidimensional Dis-crete Models. Polymers. 2020; 12(1): 154. https://doi.org/10.3390/polym12010154
  • 23. Silva HM, Noversa JT, Fernandes L, Rodrigues HL, Pontes AJ. Design, Simulation and Optimization of Conformal Cooling Channels in Injection Molds: A review. The International Journal of Advanced Manufacturing Technology. 2022; 120(7-8):4291–305. https://doi.org/10.1007/s00170-022-08693-4
  • 24. Kanbur BB, Suping S, Duan F. Design and optimization of conformal cooling channels for injection molding: a review. Int J Adv Manuf Technol. 2020; 106: 3253-3271. https://doi.org/10.1007/s00170-019-04697-9
  • 25. Feng S, Kamat AM, Pei Y. Design Fabrication of Conformal Cooling Channels in Molds: Review Progress Updates. International Journal of Heat and Mass Transfer. 2021; 171:121082. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121082
  • 26. Yao DG, Chen SC, Kim B. Rapid Thermal Cycling of Injection Molds: An Overview on Technical Approaches and Applications. Advances in Polymer Technology. 2008; 27(4):233–55. https://doi.org/10.1002/adv.20136
  • 27. Muvunzi R, Dimitrov DM, Matope S, Hams T. A case study on the design of a hot stamping tool with conformal cooling channels. Int J Adv Manuf Technol. 2021; 114: 1833-1846. https://doi.org/10.1007/s00170-021-06973-z
  • 28. Kanbur BB, Zhou Y, Shen S, Wong KH, Chen C, Shocket A, Duan F. Metal Additive Manufacturing of Plastic Injection Molds with Confor-mal Cooling Channels. Polymers. 2022; 14: 424. https://doi.org/10.3390/polym14030424
  • 29. Kuo CC, Xu JY, Zhu YJ, Lee CH. Effects of Different Mold Materials and Coolant Media on the Cooling Performance of Epoxy-Based In-jection Molds. Polymers. 2022; 14: 280. https://doi.org/10.3390/polym14020280
  • 30. Kuo CC, You ZY, Wu JY, Huang JL. Development and application of a conformal cooling channel with easy removal and smooth surfaces. Int J Adv Manuf Technol . 2019;102: 2029-2039. https://doi.org/10.1007/s00170-019-03316-x
  • 31. Kuo C.C., Chen W.H. Improving Cooling Performance of Injection Molding Tool with Conformal Cooling Channel by Adding Hybrid Fill-ers. Polymers, 2021, 13, 1224. https://doi.org/10.3390/polym13081224
  • 32. Wei Z, Wu J, Shi N, Li L. Review of Conformal Cooling System Design Additive Manufacturing for Injection Molds. Mathematical Bio-sciences and Engineering. 2020; 17(5): 5414-5431. https://doi.org/10.3934/mbe.2020292
  • 33. Park HS, Dang XP, Nguyen DS, Kumar S. Design of Advanced Injection Mold to Increase Cooling Efficiency. International Journal of Precision Engineering and Manufacturing-Green Technology. 2020; 7(2):319–28. https://doi.org/10.1007/s40684-019-00041-4
  • 34. Papadakis L, Avraam S, Photiou D, Masurtschak S, Falcón JCP. Use of a Holistic Design and Manufacturing Approach to Implement Opti-mized Additively Manufactured Mould Inserts for the Production of In-jection-Moulded Thermoplastics. Journal of manufacturing and mate-rials processing. 2020; 4(4): 100–0. https://doi.org/10.3390/jmmp4040100
  • 35. Jahan SA, El-Mounayri H. A Thermomechanical Analysis of Confor-mal Cooling Channels in 3D Printed Plastic Injection Molds. Applied Sciences. 2018 ;8(12):2567. https://doi.org/10.3390/app8122567
  • 36. Jahan SA, Wu T, Zhang Y, Zhang J, Tovar A, Elmounayri H. Ther-mo-mechanical Design Optimization of Conformal Cooling Channels using Design of Experiments Approach. Procedia Manufacturing. 2017; 10:898–911. https://doi.org/10.1016/j.promfg.2017.07.078
  • 37. Idelchik IE. Handbook of Hydraulic Resistance. Jerusalem: Israel Program for Scientific Translations Ltd. 1968.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-587ecf0d-4d2e-4731-bb03-da8d40df264b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.