Warianty tytułu
Języki publikacji
Abstrakty
Wood wastes are one of the leading contributors of greenhouse gases cum climate change. While the burning of wood wastes results in CO2 emission, decomposition generates methane. In place of these emissions, wood wastes can be converted into biochars which have a lot of novel applications. However, low biochar yield was the common limitation of wood wastes, essentially, due to a mixture of different classifications of trees that pyrolyse at different conditions. In this study, biochar yield from sorted wood wastes was optimised by varying pyrolysis temperature and time. Power consumption, cost, and carbon footprint of the optimised biochar and ash were compared for both hydropower grid and diesel generator scenarios. Optimal pyrolysis yields were 33.6 % (400 °C), 29.4 % (350 °C) and 18.5 % (400 °C) respectively for hardwood sawdust char (HSC), softwood sawdust char (SSC), and mixed sawdust char (MSC) at 2 hours duration for all materials. The CO2 emissions from ash were 2.49 kg and 19.0 kg respectively for grid and diesel power supply. The diesel generator power was 17 times more expensive than grid power for wood wastes pyrolysis. Wood wastes have better biochar yield when charred homogenously; they have a smaller carbon footprint and are cheaper when produced with power from the grid. Wood wastes in place of being burnt can be processed as inexpensive and environment-friendly biochar.
Czasopismo
Rocznik
Tom
Strony
15--26
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
- Department of Environmental Management, Pan African University (Life and Earth Sciences Institute), Ibadan, Nigeria, simiadeodun@gmail.com
autor
- Department of Agricultural and Environmental Engineering, Faculty of Technology, University of Ibadan, Nigeria
autor
- Department of Chemistry, Faculty of Science, University of Ibadan, Nigeria
Bibliografia
- [1] Borah P, Baruah N, Gogoi L, Borkotoki B, Gogoi N, Kataki R. Biochar: A new environmental paradigm in management of agricultural soils and mitigation of GHG emission. Biochar App Agric Environ Manage. 2020;20(8):223. DOI: 10.1007/978-3-030-40997-5_11.
- [2] Kim MH, Song HB. Analysis of the global warming potential for wood waste recycling systems. J Clean Prod. 2014;69(1):199-207. DOI: 10.1016/j.jclepro.2014.01.039.
- [3] Lin Y, Ge Y, Xiao H, He Q, Wang W, Chen B. Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes. Energy. 2020;210(1):118606. DOI: 10.1016/j.energy.2020.118606.
- [4] Yang D, Wang L, Li Z, Tang X, He M, Yang S, et al. Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci Total Environ. 2020;708:134823. DOI: 10.1016/j.scitotenv.2019.134823.
- [5] Ogundiran MB, Mekwunyei NS, Adejumo SA. Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. J Environ Chem Eng. 2018;6(2):2206-13. DOI: 10.1016/j.jece.2018.03.025.
- [6] Gondim RS, Muniz CR, Lima CE, Santos CL. Explaining the water-holding capacity of biochar by scanning electron microscope images. Rev Caatinga. 2018;31(4):972-9. DOI: 10.1590/1983-21252018v31n420rc.
- [7] Wang Y, Hu Y, Zhao X, Wang S, Xing G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels. 2013;27(10):5890-9. DOI: 10.1021/ef400972z.
- [8] Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol. 2020;19(1):191-215. DOI: 10.1007/s11157-020-09523-3.
- [9] Guida MY, Lanaya SE, Laghchioua FE, Rbihi Z, Hannioui A. Production of bio-oil and bio-char from pyrolysis of sawdust wood waste (SWW). Prog Agric Eng Sci. 2020;16(1):61-80. DOI: 10.1556/446.2020.00012.
- [10] Vega L, López L, Valdés CF, Chejne F. Assessment of energy potential of wood industry wastes through thermochemical conversions. Waste Manage. 2019;87:108-18. DOI: 10.1016/j.wasman.2019.01.048.
- [11] Amuda OS, Giwa AA, Bello IA. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J. 2007;36(2):174-81. DOI: 10.1016/j.bej.2007.02.013.
- [12] Okoya AA, Akinyele AB, Amuda OS, Ofoezie IE. Chitosan-grafted carbon for the sequestration of heavy metals in aqueous solution. Am Chem Sci J. 2016;11(3):1-14. DOI: 10.9734/ACSJ/2016/21813.
- [13] Amoako EE, Gambiza J. Effects of fire on the population structure and abundance of Anogeissus leiocarpa and Vitellaria paradoxa in a West African savanna parkland. Acta Oecol. 2021;112(1):1037-45. DOI: 10.1016/j.actao.2021.103745.
- [14] Alhassan DA, Uba AI, Muhammad AU, Muhammad YY. Phytochemical screening and antimicrobial activity of crude stem bark extracts of Anogeissus leiocarpus. Eur J Med Plants. 2016;11(2):1-7. DOI: 10.9734/EJMP/2016/22443.
- [15] Adrien KM, Guillaume SK, Souleymane M, Lucien BG. In vitro antibacterial and antidiarraheic activity of root bark extract of Anogeissus leiocarpa (Combretaceae) during an experimental bacterial diarrhea induced by Escherichia coli extended-spectrum-lactamases (ESBL) in albino Wistar rats. J Med Plants Res. 2018;12(27):463-73. DOI: 10.5897/JMPR2018.6663.
- [16] Kumar R, Pandey K, Chandrashekar N, Mohan S. Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass Bioenergy. 2011;35(3):1339-44. DOI: 10.1016/j.biombioe.2010.12.031.
- [17] Adeonipekun PA, Adeniyi TA, Olowokudejo JD, Akande I. Allergenicity of dominant aeropollen in Nigeria (part II). Curr Allgy Clin Immunol. 2018;31(3):178-83. DOI: 10520/EJC-109593cbe8.
- [18] Ukpebor EE, Ukpebor JE, Aigbokhan E, Goji I, Onojeghuo AO, Okonkwo AC. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals. J Environ Sci. 2010;22(7):1073-9. DOI: 10.1016/S1001-0742(09)60219-9.
- [19] Crombie K, Mašek O. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy. 2015;7(2):349-61. DOI: 10.1111/gcbb.12137.
- [20] Okoya AA, Akinyele AB, Ifeanyi E, Amuda OS, Alayande OS, Makinde OW. Adsorption of heavy metal ions onto chitosan grafted cocoa husk char. Afr J Pure Appl Chem. 2014;8(10):147-61. DOI: 10.5897/AJPAC2014.0591.
- [21] Sam-Amobi C, Ekechukwu O, Chukwuali C. A preliminary assessment of the energy related carbon emissions associated with hotels in Enugu metropolis Nigeria. Int J Sci Technol. 2019;8(2):19-30. DOI: 10.4314/stech.v8i2.2.
- [22] Wong C. Atmospheric input of carbon dioxide from burning wood. Science. 1978;200(4338):197-200. DOI: 10.1126/science.200.4338.197.
- [23] Fearnside PM. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change. 2000;46(1):115-58. DOI: 10.1023/A:1005569915357.
- [24] Oliver CD, Nassar NT, Lippke BR, McCarter JB. Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J Sustain For. 2014;33(3):248-75. DOI: 10.1080/10549811.2013.839386.
- [25] Babatunde OM, Ayegbusi CO, Babatunde DE, Oluseyi PO, Somefun TE. Electricity supply in Nigeria: Cost comparison between grid power tariff and fossil-powered generator. Int J Energy Econ. 2019;10(2):160-4. DOI: 10.32479/ijeep.8590.
- [26] Pariyar P, Kumari K, Jain MK, Jadhao PS. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci Total Environ. 2020;713(1):136433. DOI: 10.1016/j.scitotenv.2019.136433.
- [27] Khan TA, Gupta A, Jamari SS, Nasir M, Jang S, Kim H-J, et al. Synthesis of micro carbonaceous material by pyrolysis of rubber wood and its effect on properties of urea-formaldehyde (UF) resin. Int J Adhes Adhes. 2020;99:102589. DOI: 10.1016/j.ijadhadh.2020.102589.
- [28] Schaffer S, Pröll T, Al Afif R, Pfeifer C. A mass-and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass Bioenergy. 2019;120:281-90. DOI: 10.1016/j.biombioe.2018.11.019.
- [29] Hu X, Zhu Z, Chen C, Wen T, Zhao X, Xie L. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sens Actuators B Chem. 2017;253:809-17. DOI: 10.1016/j.snb.2017.06.183.
- [30] Yang L, Yan H, Lam JC. Thermal comfort and building energy consumption implications - a review. Appl Energy. 2014;115(1):164-73. DOI: 10.1016/j.apenergy.2013.10.062.
- [31] Mobarra M, Issa M, Rezkallah M, Ilinca A. performance optimization of diesel generators using permanent magnet synchronous generator with rotating stator. EPE. 2018;11(7):22-46. DOI: 10.4236/epe.2019.117017.
- [32] Soto D. Modeling and measurement of specific fuel consumption in diesel microgrids in Papua, Indonesia. Energy Sustain Dev. 2018;45(1):180-5. DOI: 10.1016/j.esd.2018.06.013.
- [33] Brulle RJ. Institutionalizing delay: foundation funding and the creation of U.S. climate change countermovement organizations. Clim Change. 2014;122(4):681-94. DOI: 10.1007/s10584-013-1018-7.
- [34] Bello MO, Solarin SA, Yen YY. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: the role of hydropower in an emerging economy. J Environ. 2018;219(1):218-30. DOI: 10.1016/j.jenvman.2018.04.101.
- [35] Dalir F, Motlagh MS, Ashrafi K. A dynamic quasi comprehensive model for determining the carbon footprint of fossil fuel electricity: a case study of Iran. J Clean Prod. 2018;188:362-70. DOI: 10.1016/j.jclepro.2018.03.274.
- [36] Winsley P. Biochar and bioenergy production for climate change mitigation. N Z Sci Rev. 2007;64(1):5-10. DOI: 10.1.1.372.943.
- [37] García-Freites S, Gough C, Röder M. The greenhouse gas removal potential of bioenergy with carbon capture and storage (BECCS) to support the UK's net-zero emission target. Biomass Bioenergy. 2021;151(1):106164. DOI: 10.1016/j.biombioe.2021.106164.
- [38] Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S. Sustainable biochar to mitigate global climate change. Nat Commun. 2010;1(1):1-9. DOI: 10.1038/ncomms1053.
- [39] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci. 2018;11(5):1062-176. DOI: 10.1039/C7EE02342A.
- [40] Terlouw T, Bauer C, Rosa L, Mazzotti M. Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy Environ Sci. 2021;14(4):1701-21. DOI: 10.1039/D0EE03757E.
- [41] Fawzy S, Osman AI, Yang H, Doran J, Rooney DW. Industrial biochar systems for atmospheric carbon removal: a review. Environ Chem Lett. 2021;19(4):3023-55. DOI: 10.1007/s10311-021-01210-1.
- [42] Yang X, Zhang S, Ju M, Liu L. Preparation and modification of biochar materials and their application in soil remediation. Appl Sci. 2019;9(7):1365. DOI: 10.3390/app9071365.
- [43] Lee JE, Park Y-K. Applications of modified biochar-based materials for the removal of environment pollutants: A mini review. Sustainability. 2020;12(15):6112. DOI: 10.3390/su12156112.
- [44] Ji B, Wang J, Song H, Chen W. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism. J Environ Chem Eng. 2019;7(3):103036. DOI: 10.1016/j.jece.2019.103036.
- [45] Zahedifar M, Seyedi N, Shafiei S, Basij M. Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(ΙΙ) and Cd(ΙΙ). Mater Chem Phys. 2021;271:124860. DOI: 10.1016/j.matchemphys.2021.124860.
- [46] Ma X, Zhou B, Budai A, Jeng A, Hao X, Wei D, et al. Study of biochar properties by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX). Commun Soil Sci Plant Anal. 2016;47(5):593-601. DOI: 10.1080/00103624.2016.1146742.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58710eab-3dd7-4f9a-a1d1-9a92a9b80a8a