Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 4 | 314--322
Tytuł artykułu

Study of the Possibility of Biorecultivation of Soils Contaminated with Brown Coal Waste

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental pollution by industrial waste, including brown coal mining, is one of the environmental problems of many countries. To improve the ecological situation in the region, it is necessary to recultivate soils contaminated with brown coal waste. The goal of the study was to study the possibility of biorecultivation of soils polluted with brown coal waste from the Lenger deposit located in the south of Kazakhstan. It was found that the inorganic part of the brown coal waste is represented by minerals: Quartz SiO2 , Gypsum CaSO4×2H2O, Kaolinite Al2Si2O5(OH)4, Cronstedtite Fe3((Si0.74Fe0.26)2O5)(OH)4, Margarite CaAl2(Si2Al2)O10(OH)2, Muscovite H2KAl3(SiO4)3, Calcite CaCO3, Laumontite CaAl2Si4O12(H2O)2, Lead Aluminium Sulfate Hydroxide Pb0.5Al3(SO4)2(OH)6, with quartz content in samples in the range of 61.5–92.9%. The organic part of the waste is 90.0% made up of humic acids and fulvic acids. It has been established that heterotrophic, cellulolytic microflora and micromycetes are represented by the genera Rhodococcus, Bacillus, Pseudomonas, Penicillium; Trichoderma, Dietzia, promising for biorecultivation purposes. The phytocenosis of coal waste dumps is composed of toxicotolerant ruderal plant species of the local f lora: Centaurea scabiosa L., Centaurea iberica Trev., Cichorium intybus Linn., Cousinia cyrdariensis Kult., Achilleamille folium L., Thlaspiar vense L., Arctiumto mentosum Mill., Onopórduma cánthium L., Agropyron cristatum L., Phlum pratense L., Erytrigia repens L., Nevski/Agropyron repens L.,Cynodon dactylon L., Capparis spinosa L., Polygonum aviculare L., Dodartia orientalis L., Althaea officinales L., Alhagipseud alhagi (Bieb.)Desv., Peganum harmala L. For biorecultivation of soils contaminated with brown coal waste, an algorithm of work has been developed, including the use of soil blocks with integrated seeds of toxicotolerant plants inoculated with microorganisms.
Wydawca

Rocznik
Strony
314--322
Opis fizyczny
Bibliogr. 27 poz, rys.
Twórcy
  • Shymkent University, Zhibek Zholy Av., 221, Shymkent, 160000, Kazakhstan
  • South Kazakhstan University named after M. Auezov, Tauke Khan Av., 5, Shymkent, 160000, Kazakhstan
  • Shymkent University, Zhibek Zholy Av., 221, Shymkent, 160000, Kazakhstan
  • South Kazakhstan University named after M. Auezov, Tauke Khan Av., 5, Shymkent, 160000, Kazakhstan
  • South Kazakhstan University named after M. Auezov, Tauke Khan Av., 5, Shymkent, 160000, Kazakhstan
  • South Kazakhstan University named after M. Auezov, Tauke Khan Av., 5, Shymkent, 160000, Kazakhstan, aseltleukeyeva@mail.ru
Bibliografia
  • 1. Akimbekov, N., Digel, I., Qiao, X., Tastambek, K., Zhubanova, A. 2020.Lignite biosolubilization by Bacillus sp. RKB 2 and characterization of its products. Geomicrobiology Journal, 37(3), 255-261.
  • 2. Allard B. 2006. A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit: Bound lipid, carbohydrate and amino acid distributions. Geoderma, 130(1-2), 77-96.
  • 3. Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S., Fenton, O., Malina, G., Szara, E. 2020. Restoration of soil quality using biochar and brown coal waste: A review. Science of the Total Environment, 722, 137852.
  • 4. Anemana, T., Óvári, M., Szegedi, A., Uzinger, N., Rékási, M., Tatár, E., Yao, J., Streli, C., Záray, G., Mihucz, V.G. 2019. Optimization of lignite particle size for stabilization of trivalent chromium in soils. Soil Sedi. Contam. https://doi.org/10.1080/15320383.2019.1703100.
  • 5. Bećirović, S., Skenderovic I.,Bećir K. Environmental pollution and waste management. Balkan Journal of Health Science, 3(1), 2-10.
  • 6. Chakravarty, P.; Kumar, M. 2019. Floral species in pollution remediation and augmentation of micrometeorological conditions and microclimate an integrated approach. In: Phytomanagement Polluted Sites, 203-209.
  • 7. Dzionek A., Wojcieszyńska D., Guzik U. 2016. Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. https:// doi.org/10.1016/j.ejbt.2016.07.003.
  • 8. Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability, 11, 3417.
  • 9. Eremeeva N.A, Savoskina O.A, Poddymkina L.M., Abdulmazhidov K.A., Gamidov A.G. 2023. Analysis of anthropogenic impact on the environment, measures to reduce it, and waste management. Front. Bioeng. Biotechnol. 11, 1114422. https://doi. org/10.3389/fbioe.2023.1114422
  • 10. Eswaran, S.V. 2021. Value-added products from soil, brown coal, and composted city solid waste. Front. Sustain. Food Syst. 5, 738899.
  • 11. Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E and Alkorta I. 2017. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front. Microbiol. 8, 1966. https://doi. org/10.3389/fmicb.2017.01966
  • 12. Gazizov, R., Sukhanova, I., Prishchepenko, E., Sidorov, V. 2021. Influence of sapropel, diatomite, brown coal and vermicompost in normal and ultrafine forms on productivity and quality of spring Barley. BIO Web of Conferences, 37, 00058. https:// doi.org/10.1051/bioconf/20213700058.
  • 13. Issayeva A. U., Bishimbayev V.K., Mukhamedzhanov B.G., Myrhalykov Zh.U., Uspabayeva A.A., Tleukeyeva A.E. 2015. Method of phytoconservation of toxic waste, waste dumps and tailings of the mining and metallurgical complex. Eurasian Patent 201500895 (13) A1, 2015.01.29 (in Russian)
  • 14. Issayeva A.U., Uspabayeva A.A., Sattarova A.M., Shingisbayeva Z.A., Issayeva R. 2017. Consortium of hydrocarbon-oxidizing microorganisms as a basis for a biological product for treating petroleum industry waste in Southern Kazakhstan. Ekoloji 26(100).
  • 15. Issayeva, A., Mametova A., Baidussenova T., Kossauova A., Zhumakhanova R., Zhumadulayeva, A., Ashirbayeva, S., Patasheva A. 2023. The effect of oil pollution of the gray soils on revegetation in the South of Kazakhstan. Journal of Ecological Engineering. 24(1), 28-33. https://doi. org/10.12911/22998993/155997
  • 16. Lehmann, J. 2007. Bio-energy in the black. Front. Ecology Environ. 5, 381–387.
  • 17. Longoni, A., Fiorini, C., Struder, L., Malzer, W.. 2006. Handbook of Practical X-Ray Fluorescence Analysis. Springer.
  • 18. Maiti S.K. 2007. Bioreclamation of coalmine overburden dumps with special empasis on micronutrients and heavy metals accumulation in tree species. Environ Monit Assess. 125(1-3): 111-22. https://doi. org/ 10.1007/s10661-006-9244-3.
  • 19. Mikos-Szymańska, M., Schab, S., Rusek, P. 2019. Preliminary study of a method for obtaining brown coal and biochar based granular compound fertilizer. Waste Biomass Valor. 10, 3673–3685. https:// doi.org/10.1007/s12649-019-00655-4
  • 20. Ngozi, H., Arihilam, E. C. 2019. Impact and control of anthropogenic pollution on the ecosystem: A review. J. Biosci. Biotechnol. Discov. 4(3), 54–59. https://doi.org/10.31248/jbbd2019.098
  • 21. Pimmata P., Reungsang A., Plangklang P. 2013. Comparative bioremediation of carbofuran contaminated soil by natural attenuation, bioaugmentation and biostimulation. International Biodeterioration and Biodegradation, 85, 196–204.
  • 22. Pokorný, R.; Olejníková, P.; Balog, M.; Zifčák, P.; Hölker, U.; Janssen, M.; Bend, J.; Höfer, M.; Holienčin, R.; Hudecová, D. 2005. Characterization of microorganisms isolated from lignite excavated from the Záhorie coal mine (southwestern Slovakia). Research in Microbiology, 156(9), 932-943.
  • 23. Simarro R, González N, Bautista L.F, Molina M.C. 2013. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. J Hazard Mater. 262:158-67. https://doi.org/10.1016/j. jhazmat.2013.08.025.
  • 24. Sokolov, G.A., Szajdak, L.W., &Simakina, I.V. 2008.Changes in the structure of nitrogen-containing compounds of peat-, sapropel-, and brown coal-based organic fertilizers. Agronomy Research, 6, 149-160.
  • 25. Symanowicz, B.; Toczko, R. 2023. Brown coal waste in agriculture and environmental protection: A review. Sustainability 15, 13371. https://doi. org/10.3390/su151813371
  • 26. Symanowicz, B.; Toczko, R.; Toczko, M. 2022. Enzymatic activity of soil after applying mineral fertilizers and waste lignite to maize grown for silage. Agriculture 12, 2146.
  • 27. Wang Y.J, Chen J.H, Cui Y.X, Wang S.Q, Zhou D.M. 2008. Effects of low-molecular-weight organic acids on Cu(II) adsorption on to hydroxyapatite nanoparticles. J Hazard Mater. 162(2-3), 1135-40. https://doi.org/10.1016/j.jhazmat.2008.06.001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-58632e9b-ae12-4cd3-b668-1cdd799d4c8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.