Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 3 | 216--221
Tytuł artykułu

Design of a conformal fractal antenna with SIW for medical implants application

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Projekt konformalnej anteny fraktalnej z SIW do zastosowań w implantach medycznych
Języki publikacji
EN
Abstrakty
EN
This paper proposed a new design of fractal antenna with Substrate Integrated Waveguide (SIW) and dual-resonant for wireless implantable capsule systems. The proposed antenna conforms to an implantable capsule with an 11 mm radius and 25 mm length without occupying the capsule's internal space. the proposed antenna has four slots and a fractal shape for extending the effective current path. The substrate is using Rogers 5880, with 2.2 as relative permittivity and 0.787 mm thickness, while the capsule is made of medical Teflon plastic. This proposed design achieves conformal characteristics with human tissue compatibility. Computer simulation technology (CST) software was used to simulate and analyze the antenna in different variety of environments. At operating frequency of 2.4. GHz and 5.8 GHz industrial, scientific and medical (ISM). The antenna’s bandwidth reach (2.1 GHz-2.3 GHz) and (5.42 GHz-6.04 GHz). The maximum gains of −7.5 dBi and −5.1 dBi at 5.8 GHz and 2.4 GHz, respectively. Voltage standing wave ratio (VSWR) of 1.2 and 1.17, and front-to-back ratio (FBR) of 20.4 dB and 16.07 at 5.8 GHz and 2.4 GHz, respectively. The antenna was experimentally measured in a minced pork. From the result and analysis, it is confirmed that the proposed antenna is successfully suited for wireless implantable capsule systems
PL
W tym artykule zaproponowano nowy projekt anteny fraktalnej z falowodem zintegrowanym z podłożem (SIW) i podwójnym rezonansem dla bezprzewodowych systemów wszczepialnych kapsułek. Proponowana antena odpowiada wszczepialnej kapsułce o promieniu 11 mm i długości 25 mm bez zajmowania wewnętrznej przestrzeni kapsułki. proponowana antena ma cztery szczeliny i kształt fraktalny do wydłużenia skutecznej ścieżki prądu. Podłoże wykorzystuje Rogers 5880, o przenikalności względnej 2,2 i grubości 0,787 mm, podczas gdy kapsułka jest wykonana z medycznego teflonu. Ten proponowany projekt osiąga cechy zgodne z kompatybilnością tkanek ludzkich. Do symulacji i analizy anteny w różnych środowiskach wykorzystano oprogramowanie technologii symulacji komputerowej (CST). Przy częstotliwości roboczej 2,4. GHz i 5,8 GHz dla zastosowań przemysłowych, naukowych i medycznych (ISM). Zasięg pasma anteny (2,1 GHz-2,3 GHz) i (5,42 GHz-6,04 GHz). Maksymalne zyski -7,5 dBi i -5,1 dBi odpowiednio przy 5,8 GHz i 2,4 GHz. Współczynnik fali stojącej napięcia (VSWR) 1,2 i 1,17 oraz stosunek przód-tył (FBR) 20,4 dB i 16,07 odpowiednio przy 5,8 GHz i 2,4 GHz. Antenę mierzono eksperymentalnie w mielonej wieprzowinie. Na podstawie wyników i analiz potwierdzono, że proponowana antena z powodzeniem nadaje się do bezprzewodowych systemów wszczepialnych kapsuł.
Wydawca

Rocznik
Strony
216--221
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, mustafa.utem@gmail.com
  • School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, noordini@utm.my
  • Department of Medical Instrumentation Engineering Techniques, College of Medical Techniques, Alfarahidi University, Baghdad, Iraq, ali.jasim@turath.edu.iq
  • School of Electrical Engineering,Universiti Teknologi Malaysia, Johor Bahru, Malaysia, asniza@utm.my
  • Information Technology and Communication (ITC), Al-Furat Al-Awsat Technical University, Samawah, Iraq, yaqthanm79@gmail.com
  • School of Electrical Engineering,Universiti Teknologi Malaysia, Johor Bahru, Malaysia, asniza@utm.my
Bibliografia
  • [1] R. Shadid and S. Noghanian, “A Literature Survey on Wireless Power Transfer for Biomedical Devices,” Int. J. Antennas Propag., vol. 2018, 2018, doi: 10.1155/2018/4382841.
  • [2] M. M. Soliman et al., “Review on medical implantable antenna technology and imminent research challenges,” Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21093163.
  • [3] R. Alrawashdeh, “Patch antenna based on spiral split rings for bone implants,” Prz. Elektrotechniczny, vol. 96, no. 7, pp. 129–134, 2020, doi: 10.15199/48.2020.07.24.
  • [4] N. Dixit, A. Agarwal, and K. Patkar, “Implementation of multiplesquare slots in micro-strip rectangular patch antenna for Sband application,” in 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Mar. 2016, pp. 1–3, doi: 10.1109/CDAN.2016.7570931.
  • [5] Z. Bao, Y. X. Guo, and R. Mittra, “Conformal Capsule Antenna with Reconfigurable Radiation Pattern for Robust Communications,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3354–3365, 2018, doi: 10.1109/TAP.2018.2829828.
  • [6] P. Loktongbam, D. Pal, and C. Koley, “Design of an implantable antenna for biotelemetry applications,” Microsyst. Technol., vol. 26, no. 7, pp. 2217–2226, 2020, doi: 10.1007/s00542-019-04531-y.
  • [7] M. M. Jawad, N. N. N. A. Malik, N. A. Murad, M. R. Ahmad, M. R. M. Esa, and Y. M. Hussein, “Design of substrate integrated waveguide with minkowski-sierpinski fractal antenna for wban applications,” Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp. 2455–2461, 2020, doi: 10.11591/eei.v9i6.2194.
  • [8] S. Ahmad et al., “A Wideband Bear-Shaped Compact Size Implantable Antenna for In-Body Communications,” Appl. Sci., vol. 12, no. 6, 2022, doi: 10.3390/app12062859.
  • [9] O. Gürdoğan, A. E. Aydın, and S. C. Başaran, “Multilayered Implantable Antenna Design for Biotelemetry Communication,” Turkish J. Electromechanics Energy, vol. 3, no. 1, pp. 1–5, 2018, [Online]. Available: https://sloi.org/urn:sl:tjoee3167.
  • [10] J. Wang, M. Leach, E. G. Lim, Z. Wang, R. Pei, and Y. Huang, “An Implantable and Conformal Antenna for Wireless Capsule Endoscopy,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp. 1153–1157, 2018, doi: 10.1109/LAWP.2018.2836392.
  • [11] A. J. A. Al-Gburi et al., “High Gain of UWB CPW-fed mercedes-shaped printed monopole antennas for UWB applications,” Prz. Elektrotechniczny, vol. 97, no. 5, pp. 70–73, 2021, doi: 10.15199/48.2021.05.11.
  • [12] M. S. Miah, A. N. khan, C. Icheln, K. Haneda, and K. Takizawa, “Antenna Systems for Wireless Capsule Endoscope: Design, Analysis and Experimental Validation,” pp. 1–11, 2018, [Online]. Available: http://arxiv.org/abs/1804.01577.
  • [13] S. Hout and J. Y. Chung, “Design and Characterization of aMiniaturized Implantable Antenna in a Seven-Layer Brain Phantom,” IEEE Access, vol. 7, no. November, pp. 162062–162069, 2019, doi: 10.1109/ACCESS.2019.2951489.
  • [14] N. Ganeshwaran, J. K. Jeyaprakash, M. G. N. Alsath, and V.Sathyanarayanan, “Design of a Dual-Band Circular Implantable Antenna for Biomedical Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 1, pp. 119–123, 2020, doi: 10.1109/LAWP.2019.2955140.
  • [15] F. Faisal, M. Zada, A. Ejaz, Y. Amin, S. Ullah, and H. Yoo, “A Miniaturized Dual-Band Implantable Antenna System for Medical Applications,” IEEE Trans. Antennas Propag., vol. 68, no. 2, pp. 1161–1165, 2020, doi: 10.1109/TAP.2019.2938591.
  • [16] S. Symeonidis, W. G. Whittow, M. Zecca, and C. Panagamuwa, “Bone fracture monitoring using implanted antennas in the radius, tibia and phalange heterogeneous bone phantoms,” Biomed. Phys. Eng. Express, vol. 4, no. 4, 2018, doi: 10.1088/2057-1976/aab974.
  • [17] Z. Xia et al., “A Wideband Circularly Polarized Implantable Patch Antenna for ISM Band Biomedical Applications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 2399–2404, 2020, doi: 10.1109/TAP.2019.2944538.
  • [18] S. Ahmad, B. Manzoor, S. Naseer, N. Santos-Valdivia, A. Ghaffar, and M. I. Abbasi, “X-Shaped Slotted Patch Biomedical Implantable Antenna for Wireless Communication Networks,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/7594587.
  • [19] D. Nikolayev, W. Joseph, A. Skrivervik, M. Zhadobov, L. Martens, and R. Sauleau, “Dielectric-Loaded Conformal Microstrip Antennas for Versatile In-Body Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 12, pp. 2686–2690, 2019, doi: 10.1109/LAWP.2019.2948814.
  • [20] M. S. Singh, J. Ghosh, S. Ghosh, and A. Sarkhel, “Miniaturized Dual-Antenna System for Implantable Biotelemetry Application,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 8, pp. 1394–1398, 2021, doi: 10.1109/LAWP.2021.3081477.
  • [21] M. S. Miah, C. Icheln, M. M. Islam, and K. Haneda, “An Ultrawideband Conformal Antenna at 433 MHz for Wireless Capsule Endoscope of Pediatric Patients,” IEEE Int. Symp. Pers. Indoor Mob. Radio Commun. PIMRC, vol. 2018-Septe, pp. 350–355, 2018, doi: 10.1109/PIMRC.2018.8580890.
  • [22] M. R. Islam, R. R. Hasan, M. A. Haque, S. Ahmad, K. A. Mazed, and M. R. Islam, “In-body antenna for wireless capsule endoscopy at MICS band,” Adv. Intell. Syst. Comput., vol. 857, pp. 801–810, 2019, doi: 10.1007/978-3-030-01177-2_59.
  • [23] K. Chen, Q. Xu, X. Shen, and C. Ren, “The Effect of ZigzagBoundaries on the Reverberation Chamber Performance,” IEEE Access, vol. 9, pp. 145471–145476, 2021, doi: 10.1109/ACCESS.2021.3123352.
  • [24] H. Ullah and F. A. Tahir, “A broadband wire hexagon antenna array for future 5G communications in 28 GHz band,” Microw. Opt. Technol. Lett., vol. 61, no. 3, pp. 696–701, 2019, doi: 10.1002/mop.31613.
  • [25] M. Takahashi, “Antennas for Wireless Power Transmission ofCapsule Endoscope,” 2018 IEEE Int. Work. Electromagn. Appl. Student Innov. Compet. iWEM 2018, vol. 1, pp. 1–2, 2018, doi: 10.1109/iWEM.2018.8536724.
  • [26] M. Sarestoniemi, C. Pomalaza-Raez, C. Kissi, and J. Iinatti, “Simulation and Measurement Data-Based Study on Fat as Propagation Medium in WBAN Abdominal Implant Communication Systems,” IEEE Access, vol. 9, pp. 46240–46259, 2021, doi: 10.1109/ACCESS.2021.3068116.
  • [27] P. Gas and A. Miaskowski, “SAR optimization for multi-dipole antenna array with regard to local hyperthermia,” Prz. Elektrotechniczny, vol. 95, no. 1, pp. 17–20, 2019, doi: 10.15199/48.2019.01.05.
  • [28] C. Liu, Y. X. Guo, and S. Xiao, “Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications,” IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2407–2417, 2014, doi: 10.1109/TAP.2014.2307341.
  • [29] L. J. Xu, Y. X. Guo, and W. Wu, “Miniaturized circularly polarized loop antenna for biomedical applications,” IEEE Trans. Antennas Propag., vol. 63, no. 3, pp. 922–930, 2015, doi: 10.1109/TAP.2014.2387420.
  • [30] H. Li, Y. X. Guo, and S. Q. Xiao, “Broadband circularly polarised implantable antenna for biomedical applications,” Electron. Lett., vol. 52, no. 7, pp. 504–506, 2016, doi: 10.1049/el.2015.4445.
  • [31] X. Y. Liu, Z. T. Wu, Y. Fan, and E. M. Tentzeris, “A Miniaturized CSRR Loaded Wide-Beamwidth Circularly Polarized Implantable Antenna for Subcutaneous Real-Time Glucose Monitoring,” IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 577–580, 2017, doi: 10.1109/LAWP.2016.2590477.
  • [32] K. Zhang, C. Liu, X. Liu, H. Guo, and X. Yang, “Miniaturized Circularly Polarized Implantable Antenna for ISM-Band Biomedical Devices,” Int. J. Antennas Propag., vol. 2017, 2017, doi: 10.1155/2017/9750257. 0
  • [33] C. Liu, Y. Zhang, and X. Liu, “Circularly Polarized Implantable Antenna for 915 MHz ISM-Band Far-Field Wireless Power Transmission,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 3, pp. 373–376, 2018, doi: 10.1109/LAWP.2018.2790418.
  • [34] N. Pournoori, S. Ma, L. Sydanheimo, L. Ukkonen, T. Bjorninen, and Y. Rahmat-Samii, “Compact dual-band PIFA based on a slotted radiator for wireless biomedical implants,” 2019 IEEE Int. Symp. Antennas Propag. Usn. Radio Sci. Meet. APSURSI 2019 - Proc., no. October, pp. 13–14, 2019, doi: 10.1109/APUSNCURSINRSM.2019.8889083.
  • [35] Y. Alamgir et al., “Compacted Conformal Implantable Antenna with Multitasking Capabilities for Ingestible Capsule Endoscope,” IEEE Access, vol. 8, pp. 157617–157627, 2020, doi: 10.1109/ACCESS.2020.3019663.
  • [36] D. Nguyen and C. Seo, “An ultra-miniaturized antenna usingloading circuit method for medical implant applications,” IEEE Access, vol. 9, pp. 111890–111898, 2021, doi: 10.1109/ACCESS.2021.3103827.
  • [37] K. Liu et al., “Design of Conformal Spiral Dual-Band Antenna for Wireless Capsule System,” IEEE Access, vol. PP, p. 1, 2021, doi: 10.1109/ACCESS.2021.3106735.
  • [38] T. Le and T. Y. Yun, “Wearable Dual-Band High-Gain Low-SARAntenna for Off-Body Communication,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 7, pp. 1175–1179, 2021,
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-585cc97f-0b90-42d5-98d3-264d297c4952
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.