Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Zastosowanie szkła konstrukcyjnego w kształtowaniu przeszklonych elewacji
Języki publikacji
Abstrakty
Glass is a significant material in shaping contemporary architecture. Its main feature is transparency, which is related to the possibility of letting daylight into building interiors. Glass facades mark the almost invisible border between the interior and exterior space, which is a source of endless design inspiration. This situation is facilitated by the development of technology and knowledge on glass as a structural material. The article aims to identify and analyse the possibility to apply structural glass in glazed facades. The paper analyses the technological and structural aspects of glass. The conducted analyses were based on the following methods: logical argumentation, comparative method, and case study. The analysis of selected architectural implementations provided a major contribution to the work results. Based on this, the typology and characteristics of design solutions were established for glass facades in which structural glass is used. The search for solutions aimed at shaping all-glass self-supporting structures was assumed as the main criterion of the indicated typology. It has been established that shaping all-glass self-supporting structures is achievable with the use of frameless systems, glass fins, folded plate glass systems, or facades with bent glass. By designing self-supporting systems, the elimination or reduction of support systems of other materials can be achieved. Thus, the use of structural glass in these structures allows for uniform material solutions. These solutions not only focus on technological and structural aspects but also have a significant impact on the architectural creation of the facade.
Szkło jest znaczącym materiałem w kształtowaniu współczesnej architektury. Główną jego cechą pozostaje transparentność, co wiąże się z możliwością przepuszczania światła dziennego do wnętrza budynku. Szklane elewacje wyznaczają zanikającą granicę między wnętrzem a przestrzenią zewnętrzną, co jest źródłem inspiracji projektowych. Sprzyja temu również rozwój technologii i wiedzy dotyczącej właściwości szkła jako materiału konstrukcyjnego. Celem artykułu jest rozpoznanie i przeanalizowanie możliwości stosowania szkła konstrukcyjnego w przeszklonych elewacjach. W pracy przeanalizowano aspekty technologiczne i konstrukcyjne szkła. Analizy wykonano w oparciu o metodę logicznej argumentacji, metodę porównawczą oraz studium przypadku. Duży wpływ na wyniki pracy miała analiza wybranych realizacji architektonicznych. Na tej podstawie ustalono typologię i charakterystykę rozwiązań projektowych szklanych fasad z zastosowaniem szkła konstrukcyjnego. Głównym kryterium wskazanej typologii było poszukiwanie rozwiązań, w których dąży się do kształtowania całoszklanych samonośnych struktur. Ustalono, że jest to możliwe przy zastosowaniu systemów bezramowych, szklanych żeber, systemów tarczownicowych czy szkła giętego. Projektowanie systemów samonośnych pozwala wyeliminować lub ograniczyć systemy wsporcze z innych materiałów. Dzięki użyciu szkła konstrukcyjnego możliwe jest zatem uzyskanie jednorodnych materiałowo rozwiązań. Rozwiązania te nie tylko koncentrują się na aspektach technologicznych i konstrukcyjnych, ale mają także wpływ na architektoniczną kreację elewacji.
Rocznik
Tom
Strony
359--384
Opis fizyczny
Bibliogr. 90 poz., rys., zdj.
Twórcy
autor
- Warsaw University of Technology, Faculty of Architecture, anna.jozwik@pw.edu.p
Bibliografia
- Aguilar-Santana, J.L. et al. (2020), ‘Review on Window-glazing Technologies and Future Prospects’, International Journal of Low-Carbon Technologies, 15, pp. 112-120. Available at: https://doi.org/10.1093/ijlct/ctz032 (accessed: 20.02.2023).
- Aiello, S. et al. (2011), ‘Compressive Behaviour of Laminated Structural Glass Members’, Engineering Structures, 33(12), pp. 3402-3408. Available at: https://doi.org/10.1016/j.engstruct.2011.07.004 (accessed: 15.03.2023).
- Amadio, C., Bedon, Ch. (2011), ‘Buckling of Laminated Glass Elements in Compression’, Journal of Structural Engineering, 137(8), pp. 803-810.
- Ángel, M., Batista, H. (2021), The Ontology of Design Research, 1st ed., New York/Oxon: Routledge.
- Bateman, S. et al. (2019), ‘A Victorian Heritage Site Adapted for 21st-century London’, Arup Journal, 2, pp. 4-13.
- Bedon, Ch., Amadio, C. (2018), ‘Buckling Analysis and Design Proposal for 2-Side Supported Double Insulated Glass Units (IGUs) in Compression’, Engineering Structures, 168, pp. 23-34. Available at: https://doi.org/10.1016/j.engstruct.2018.04.055 (accessed: 10.03.2023).
- Bedon, Ch., Santarsiero, M. (2018), ‘Transparency in Structural Glass Systems Via Mechanical, Adhesive, and Laminated Connections - Existing Research and Developments’, Advanced Engineering Materials, 20, 1700815. Available at: https://doi.org/10.1002/adem.201700815 (accessed: 5.07.2023).
- Bedon, Ch. (2021a), ‘Lateral-torsional Buckling (LTB) Method for the Design of Glass Fins with Continuous Lateral Restraints at the Tensioned Edge’, Composite Structures, 266(113790). Available at: https://doi.org/10.1016/j.compstruct.2021.113790 (accessed: 10.03.2023).
- Bedon, Ch. (2021b), ‘Simplified Lateral Torsional Buckling (LTB) Analysis of Glass Fins with Continuous Lateral Restraints at the Tensioned Edge’, Mathematical Problems in Engineering, 2021(6667373). Available at: https://doi.org/10.1155/2021/6667373 (accessed: 12.07.2023).
- Blandini, L., Grasmug, W. (2018), ‘Search for Dematerialized Building Envelopes - the Role of Glass and Steel’, Steel Construction, 11(2), pp. 140-145.
- Bott, D. (2020), ‘Slumped IGU’s with Large Airspaces: Engineering Challenges and Solutions’, Glass Structures & Engineering, 5, pp. 287-299. Available at: https://doi.org/10.1007/s40940-020-00126-6 (accessed: 25.02.2023).
- Brzezicki, M. (2018a), ‘Studies on Glass Facades Morphologies’ [in:] Weller, B., Schneider, J. (eds.) Engineered Transparency 2018. Glass in Architecture and Structural Engineering, 1st ed., Berlin: Ernst & Sohn, pp. 113-120.
- Brzezicki, M. (2018b), ‘Morphology of Serrated Glass Facades. Repetitive and Non-repetitive Serration. Single and Double Serrated Facades’, Architecture, Civil Engineering, Environment, 4, pp. 7-20. Available at: https://doi. org/10.21307/acee-2018-050 (accessed: 10.03.2023).
- Brzezicki, M. (2019a), ‘The Architectural Design of Light- -permeable Facades - a Summary of Recent Trends and Observations’, Technical Transactions. Architecture and Urban Planning, 12, pp. 5-13. Available at: https://doi.org/10.4467/2353737XCT.19.120.11445 (accessed: 1.03.2023).
- Brzezicki, M. (2019b), ‘Glass Fins - A Structural and Aesthetical Application in Glass Facades’, IOP Conf. Series: Materials Science and Engineering 603(022040). Available at: https://iopscience.iop.org/article/10.1088/1757-899X/603/2/022040/pdf (accessed: 15.09.2022).
- Brzezicki, M. (2021a), ‘Disturbance of Transparency in the Architecture of Contemporary Glass Facades. Part 1’, Architectus, 1(66), pp. 77-84. Available at: https://doi.org/10.37190/arc210109 (accessed: 1.03.2023).
- Brzezicki, M. (2021b), ‘Disturbance of Transparency in the Architecture of Contemporary Glass Facades. Part 2’, Architectus, 2(66), pp. 67–76. Available at: https://doi.org/10.37190/arc210207 (accessed: 1.03.2023).
- Buddenberg, S., Hof, P., Oechsner, M. (2016), ‘Climate Loads in Insulating Glass Units: Comparison of Theory and Experimental Results’, Glass Structural & Engineering, 1, pp. 301-313. Available at: https://link.springer.com/article/10.1007/s40940-016-0028-z (accessed: 10.03.2023).
- Carvalho, P.L., Crus, P.J.S. (2014), ‘The Design, Testing and Construction of a Folded Reinforced Glass’ [in:] Louter, Ch. et al. (eds.) Challenging Glass & COST Action TU0905 Final Conference, Leiden: CRC Press/Balkema, pp. 227-234.
- Celadyn, W. (2004), Przegrody przeszklone w architekturze energooszczędnej, Kraków: Wydawnictwo Politechniki Krakowskiej.
- Cybula, B., Żołnierczuk, M. (2015), Język kultury szklanej architektury, Warszawa: Fundacja im. Stefana Kuryłowicza.
- Datsiou, K.C. (2017), Design and Performance of Cold Bent Glass, Doctoral thesis, University of Cambridge. Available at: https://doi.org/10.17863/CAM.15628 (accessed: 10.02.2023).
- Delincé, D. et al. (2008), ‘Post-breakage Behaviour of Laminated Glass in Structural Applications’, Challenging Glass 2008 - Conference on Architectural and Structural Applications of Glass. Available at: https://biblio.ugent.be/publication/416260 (accessed: 15.03.2023).
- Doulkari, K. (2014), ‘The Transparent Facade of the Future - Maximizing Transparency with Self-supporting Glass Facade’ [in:] Louter, Ch. et al. (eds.) Challenging Glass & COST Action TU0905 Final Conference, Leiden: CRC Press/Balkema, pp. 97-104.
- Drass, M., Kraus, M.A. (2021), ‘Adé ETAG 002 - A Eurocode-compliant Design Concept for Silicone Adhesive Joints’ [in:] Lotuer, Ch. et al. (eds.) Engineered Transparency 2021. Glass in Architecture and Structural Engineering, 1st ed., Berlin: Ernst & Sohn, pp. 263-289.
- DuBois, M. (2007), ‘Glass Bearing Walls - A Case Study’ [in:] Glass Performance Days 2007, Tampere, Finland, conference proceedings.
- Dworzak-Żak, E. (2010), ‘Dematerializacja Architektury’ / ‘Dematerialization of the Architecture’, Czasopismo. Techniczne. Architektura / Technical Transactions / Architecture, 107, 7-A/2, pp. 61-64.
- Eekhout, M., Weber, L. (2014), ‘Form-stabilized Glass Facades for Erasmus Medical Center - Rotterdam’ [in:] Louter, Ch. et al. (eds.) Challenging Glass & COST Action TU0905 Final Conference, Leiden: CRC Press/Balkema, pp. 593-600.
- EN 13830:2015+A1:2020 Curtain Walling - Product Standard.
- Feirabend, S., Eckardt, P., Benning, M. (2014), ‘The Broad - Highly Sophisticated Glass Facade Behind a -GFRC’ [in:] Louter, Ch. et al. (eds.) Challenging Glass & COST Action TU0905 Final Conference, Leiden: CRC Press/ Balkema, pp. 171-175.
- Fildhuth, T., Schieber, R., Oppe, M. (2018), ‘Design and Construction with Curved Glass’ [in:] Weller, B., Schneider, J. (eds.) Engineered Transparency 2018. Glass in Architecture and Structural Engineering, 1st ed., Berlin: Ernst & Sohn, pp. 369-381.
- Gere, T. (2014), ‘Analysis of Glass Fin Moment Connection for the Building KAFD 1.14’ [in:] Louter, Ch. et al. (eds.) Challenging Glass & COST Action TU0905 Final Conference, Leiden: CRC Press/Balkema, pp. 601-610.
- Gwóźdź, M., Woźniczka, P. (2020), ‘New Static Analysis Methods for Plates Made of Monolithic and Laminated Glass’, Archives of Civil Engineering, 66(4), pp. 593-609. Available at: https://ace.il.pw.edu.pl/wp-content/uploads/2021/01/34_ACE-00114poprawiony-ok_B5.pdf (accessed: 25.02.2023).
- Haldimann, M., Luible, A., Overend, M. (2008), Structural Use of Glass, Zürich: IABSE.
- Herzog, T., Krippner, R., Lang, W. (2021), Facade Construction Manual, 3rd ed., Munich: Detail.
- Hohenstein, H. (2019), ʻCurved and 3D Glass. The New Hype in Top End Architecture - an Examination of Latest Product Developments and Projectsʼ [in:] GPD Glass Performance Days 2019, Tampere, Finland, June 26-28, conference proceedings, pp. 2-6.
- Huang, X. et al. (2022), ‘Investigation on Buckling Behavior of Laminated Glass Columns with Elastic Lateral Restraint under Axial Compression’, Composite Structures, 279(114810). Available at: https://doi.org/10.1016/j.compstruct.2021.114810 (accessed: 15.03.2023).
- Inamura, Ch. (2017), Towards a New Transparency: High Fidelity Additive Manufacturing of Transparent Glass Structures across Scales, Master Thesis, Massachusetts Institute of Technology. Available at: https://dspace.mit. edu/handle/1721.1/112536 (accessed at: 02.03.2023).
- Ishida, A. (2020), Blurred Transparencies in Contemporary Glass Architecture. Material, Culture and Technology, 1st ed., New York/Oxon: Routledge.
- Jóźwik, A. (2021), ‘Szkło konstrukcyjne w architekturze - badania naukowe i doświadczenia dydaktyczne’ [in:] Solarek, K. (ed.) Synergia twórczości, nauki i twórczości w doświadczeniach Warszawskiej Szkoły Architektury i Urbanistyki początku XXI wieku, 1st ed., Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
- Jóźwik, A. (2022a), ‘Introduction to Structural Design of Glass According to Current European Standards’, Archives of Civil Engineering, 68(2), pp. 147-170. Available at: https://ace.il.pw.edu.pl/wp-content/uploads/2022/08/art08.pdf (accessed: 10.02.2023).
- Jóźwik, A. (2002b), ‘Application of Glass Structures in Architectural Shaping of All-Glass Pavilions, Extensions, and Links’, Buildings, 12(8):1254, pp. 1-13. Available at: https://doi.org/10.3390/buildings12081254, (accessed: 10.02.2023).
- Kang, E., Park, E.J. (2021), ‘Phenomenological Transparency Through Depth of “Inside/Outside” for a Sustainable Architectural Environment’, Sustainability, 13(16):9046. Available at: https://doi.org/10.3390/su13169046 (accessed: 15.02.2023).
- Kosmala, M., Kuśnierz, A., Kozłowski, M. (2022) Szkło Budowlane, 1st ed., Warszawa: Wydawnictwo Naukowe PWN.
- Kozłowski, M. (2011), ‘Szklane ściany nośne’, Świat Szkła. Available at: https://www.swiat-szkla.pl/aktualnoci/198-wydanie-01-2011/4108-szklane-sciany-nosne.html (accessed: 10.03.2023).
- Kozłowski, M. (2019a), Balustrady szklane. Analizy doświadczalne i obliczeniowe, podstawy projektowania, 1st ed., Gliwice: Wydawnictwo Politechniki Śląskiej.
- Kozłowski, M. et al. (2019b) ‘Glass in Structural Applications’, e-Zbornik, 9 (18), pp. 47-55. Available at: https://hrcak.srce.hr/230955 (accessed: 05.03.2023).
- Kozłowski, M. (2021), ‘Numerical Evaluation of Slender Glass Panel with Complex Geometry Subjected to Static Load and Soft-body Impact’, Periodica Polytechnica Civil Engineering, 65(3), pp. 959-966. Available at: https://doi.org/10.3311/PPci.18165 (accessed: 10.03.2023).
- Krajewska, J. (2019), ‘Szklana fasada jako witryna i ściana. Relacja wnętrza z zewnętrzem’ [in:] Wnętrze - zewnętrze. Przestrzeń wspólna, vol. 1. Available at: https://www.atutoficyna.pl/uploads/images/42/Szklana_fasada_jako_witryna_i_ciana.pdf (accessed: 25.02.2023).
- de Krom, D. et al. (2020), ‘Facade Becomes Structure’ [in:] Belis, J., Bos, F., Louter, Ch. (eds.) Challenging Glass 7 - Conference on Architectural and Structural Applications of Glass. Available at: https://doi.org/10.7480/cgc.7.4545 (accessed: 01.03.2023).
- Laufs, W., Nefedov, A. (2016), ‘Jumbo-Size Glazing Engineered - Recent Projects in New York City’, Conference: GlassConGlobal, Boston, USA. Available at: https://www.researchgate.net/publication/305084316_Jumbo-_Size_Glazing_Engineered_-_Recent_Projects_in_New_York_City (accessed: 05.03.2023).
- Lenk, P. (2016), ‘Designing with Structural Glass’ [in:] Belis, J., Bos, F., Louter, Ch. (eds.) Challenging Glass 5 - Conference on Architectural and Structural Applications of Glass. Available at: https://doi.org/10.7480/cgc.5.2228 (accessed: 03.03.2023).
- Lenk, P. (2022), ‘Planning Phases of Glass Projects’ [in:] Belis, J., Bos, F., Louter, Ch. (eds.) Challenging Glass 8 - Conference on Architectural and Structural Applications of Glass. Available at: https://doi.org/10.47982/cgc.8.445 (accessed: 04.03.2023).
- Liang, Y., Lancaster, F., Izzuddin, B.A. (2016), ʻEffective Modelling of Structural Glass with Laminated Shell Elementsʼ, Composite Structures. Available at: https://doi.org/10.1016/j.compstruct.2016.02.077 (accessed: 10.07.2023).
- Luible, A., Schärer, D. (2016), ʻLateral Torsional Buckling of Glass Beams with Continuous Lateral Supportʼ, Glass Structures & Engineering, 1, pp. 153-171. Available at: https://doi.org/10.1007/s40940-016-0008-3, (accessed: 12.07.2023).
- Mocibob, D. (2008), Glass Panel under Shear Loading - Use of Glass Envelopes in Building Stabilization, Doctoral Thesis, École Polytechnique Fédérale De Lausanne, Lausanne. Available at: https://infoscience.epfl.ch/record/125889 (accessed: 10.03.2023).
- Muljadinata, A.S.M., Darmawan, A.M.S. (2016), ‘Redefining Folded Plate Structure as a Form-resistant Structure’, ARPN Journal of Engineering and Applied Sciences, 11, 7. Available at: https://www.researchgate.net/publication/304929845_Redefining_folded_plate_structure_as_a_form-resistant_structure (accessed: 10.03.2023).
- Name Architecture. Available at: https://www.namearchitecture.net/journal-content/bowwindow (accessed: 06.03.2023).
- Neugebauer, J. (2014), ‘Applications for Curved Glass in Buildings’, Journal of Facade Design and Engineering, 2(1-2), pp. 67-83.
- Nicklisch, F. (2008), ‘Engineered Transparency - Glass in Architecture and Structural Engineering’, Stahlbau, 77, pp. 52-54.
- Niezabitowska, E. (2014), Metody i techniki badawcze w architekturze, 1st ed., Gliwice: Wydawnictwo Politechniki Śląskiej.
- Nijsee, R. (2009), ‘Corrugated Glass as Improvement to the Structural Resistance of Glass’, Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia. Available at: https://riunet.upv.es/handle/10251/6710 (accessed: 1.03.2023).
- Nijsse, R., Wenting, R. (2014), ‘Designing and Constructing Corrugated Glass Facades’, Journal of Facade Design and Engineering, 2(1-2), pp. 123-131.
- Nizich. A. et al. (2019), ‘Enhancing the Light - Curved Insulated Glass Unit Design Study’ [in:] GPD Glass Performance Days 2019, Tampere, Finland, June 26-28, conference proceedings, pp. 30-33.
- Nortglass. Available at: http://north-glass.com/2-3-curved-glass/ (accessed: 15.03.2023).
- O’Callaghan, J. (2016), ʻGlass Challenges - Past, Present, and Futureʼ [in:] Cruz, P.J.S. (ed.) Structure and Architecture, London: CRC Press/Balkema, pp. 40-51.
- Pariafsai, F. (2016), ‘Transparent Buildings: the Future of All Glass Structure’. Available at: https://www.glassonweb.com/article/transparent-buildings-future-all-glass-structures (accessed: 15.02.2023).
- Patterson, M. (2011), Structural Glass Facades and Enclosures, 1st ed., Hoboken: John Wiley & Sons.
- Rapport, N. (2009), ‘The Structure of Transparency’ [in:] Bell, M., Kim. J. (eds.) Engineered Transparency: The Technical, Visual, and Spatial Effects of Glass, 1st ed., New York: Princeton Architectural Press, pp. 55-64.
- Respondek, Z. (2018), ‘Obciążenia i ugięcia w szybach zespolonych o zróżnicowanej sztywności szyb składowych’, Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 7(1), pp. 9-14. Available at: https://doi.org/10.17512/bozpe.2018.1.01 (accessed: 06.03.2023).
- Respondek, Z. (2019), ‘Glass Building Elements - Technical Aspects of Safe Usage in the Structure’, CzOTO, 1(1), pp. 291-298. Available at: https://doi.org/10.2478/czoto-2019-0038 (accessed: 05.03.2023).
- Rogińska-Niesłuchowska, M. (2017), ‘Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings’, IOP Conf. Series: Materials Science and Engineering 245(082035). Available at: https://iopscience.iop.org/article/10.1088/1757-899X/245/8/082035/pdf (accessed: 25.02.2023).
- Rosales, C. (2023), Spatial Transparency in Architecture. Light, Layering, and Porosity, 1st ed., New York/Oxon: Routledge.
- Rowe, C., Slutzky, R. (1997) Transparency, 1st ed., Basel, Boston, Berlin: Birkhäuser.
- Rubel, Ch. (2021), ‘Curved and Large Format Insulating Glass in Architectural Applications’ [in:] Weller, B., Schneider, J. (eds.) Engineered Transparency 2018. Glass in Architecture and Structural Engineering, 1st ed., Berlin: Ernst & Sohn, pp. 503-509.
- Sacht, H. et al. (2021), ‘Specification of Glazings for Facades Based on Spectrophotometric Characterization of Transmittance’, Sustainability, 13(10):5437, pp. 1-19. Available at: https://doi.org/10.3390/su13105437 (accessed: 10.03.2023).
- Sanches, J. (2013), ‘Analysis and Design of Structural Glass Systems’. Available at: https://fenix.tecnico.ulisboa.pt/downloadFile/395145312104/Extended-abstract.pdf (accessed: 15.02.2023).
- Sanchez-Gil, J. (2019), ‘Curved Glass: Reshaping Architectural Glass with New Possibilities and Frontiers’ [in:] GPD Glass Performance Days 2019, Tampere, Finland, June 26-28, conference proceedings, pp. 26-29.
- Santo, D., Mattei, S., Bedon, Ch. (2020), ʻElastic Critical Moment for the Lateral–Torsional Buckling (LTB) Analysis of Structural Glass Beams with Discrete Mechanical Lateral Restraintsʼ, Materials, 13, 2492. Available at: https://doi.org/10.3390/ma13112492 (accessed: 12.07.2023).
- Schneider, J., Weller, B. (2010), ‘Engineered Transparency - International Conference at Glasstec’, Stahlbau, 79(9), pp. 698-701.
- Schuler, E. (2013), ‘Obliczanie szyb zespolonych’, Świat Szkła, 7-8. Available: https://www.swiat-szkla.pl/kontakt/7590-obliczenia-szyb-zespolonych.html (accessed: 05.07.2023).
- Sedak. Available at: https://www.sedak.com/en/skills/laminating/ (accessed: 25.03.2023).
- Teich, M. (2019), ‘Zukunft ist aus Glas Gebaut - Aktuelle Projekte der Seele Unternehmensgruppe’ [in:] Weller, B., Tasche, S. Glasabau 2019, 1st ed., Berlin: Ernst & Sohn, pp. 1-8.
- Teich, M., Bauchinger, Ch. (2020), ‘Aktuelle Entwicklungen und Konstruktionstechniken für Glasfassaden Unternehmensgruppe’, Bautechnik, 97(5), pp. 338-343.
- Toffolon, M. (2019), ‘Dal Carbone č Nato un Centro Commerciale’, Nouva Finesta, 5. Available at: https://www.frener-reifer.com/img/media/coal-drops-yard/Nuova_Finestra_May_2019_Coal_Drops_Yard.pdf (accessed: 03.03.2023). T
- ymkiewicz, J (2014), ʻTechnologiczna Estetyka Współczesnych Fasad/Technical Aesthetics of Modern Facadesʼ, Czasopismo. Techniczne. Architektura/Technical Transations. Architecture, z. 7-A/2014, pp. 257-263.
- Veer, F., de Krom, D., Nijsee, R. (2021), ‘Demonstration of the Structural Resiliency of Damaged Sentryglas Laminated Heat Strengthened Glass Fins in Full Scale Testing’, International Journal of Structural Glass and Advanced Materials Research, 5: 29.37, pp. 29-37. Available at: https://doi.org/10.3844/sgamrsp.2021.29.37 (accessed: 16.02.2023).
- Wala, E. (2012), Szkło we współczesnej architekturze, 1st ed., Gliwice: Wydawnictwo Politechniki Śląskiej.
- Weller, B. et al. (2009), Glass in Building. Principles, Application, Examples, 1st ed., Munich: Detail.
- Wurm, J. (2007), Glass Structures. Design and Construction of Self-supporting Skins, 1st ed., Basel, Boston, Berlin: Birkhäuser.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-583efaab-6846-4a8c-80f7-27ff4b3d6d11