Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 3 | 234--245
Tytuł artykułu

Study of the Influence of Cavitation and Magnetic Field on the Change of Water Properties and its Purification in a Vibrating Machine with Determination of Drive Modes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research into the influence of low-frequency sound and magnetic fields on the change in the properties of water and its purification in a vibrating machine with an eccentric drive, which allows obtaining a constant amplitude of oscillation when the frequency of oscillations of the drive is changed. A method and construction of a vibrating machine for changing the properties of water and cleaning is proposed. Thanks to its reciprocating movement, and in the pulsation chamber and the nozzle, appropriate reactions take place. At certain oscillation frequencies, a cavitation cavity appears in the nozzle and the pulsation chamber, in which the process of splitting water molecules into active radicals takes place. At the same time, during the reciprocating movement of water through a non-magnetic nozzle, which is covered by permanent magnets, an additional effect of a variable magnetic field direction is exerted on water, which strengthens the breaking of hydrogen bonds in water molecules. Visualization of the hydrocavitation process during operation of a vibrating machine with a transparent nozzle was studied. During the experiment, changes in water parameters were studied, i.e. changes in pH, changes in the oxidation-reduction potential of treatment ORP and the total content of mineralization according to the TDS index with treatment time. The total concentration of dissolved salts decreases from 400 to 300 units, which also indicates an improvement in water quality. The rational frequency limits of the vibration drive of the machine are in the range from 18 to 23 Hz with an amplitude of oscillations of 0.002 m, and the ratio of its design parameters is determined: with a piston diameter of 0.1 m, it is recommended to use a diameter of the hole in the piston from 0.006 to 0.008 m.
Wydawca

Rocznik
Strony
234--245
Opis fizyczny
Bibliogr. 33 poz., fig.
Twórcy
  • Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
  • Department of Water Supply and Sewage Systems, Faculty of Construction, Architecture and Environmental Engineering, Rzeszow University of Technology, al. Powstancow Warszawy 12 35-959, Rzeszow, Poland
  • Department of Technical Informatics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland, m.paszeczko@pollub.pl
  • Khmelnitsky Scientific Research Forensic Center, MIA of Ukraine, 12, Youth Str., Khmelnytsky, 29010, Ukraine
  • Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
  • Department of Computerized Mechanical Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 15, Karpatska Str., Ivano-Frankivsk, 76019, Ukraine
Bibliografia
  • 1. Moftakhari A.M.S.; Calgaro, L.; Marcomini, A. Trends and characteristics of employing cavitation technology for water and wastewater treatment with a focus on hydrodynamic and ultrasonic cavitation over the past two decades: a Scientometric analysis Science of the Total Environment 2023; 858(Part 2):1598022.
  • 2. Barik, A.J.; Gogate, P.R. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs. Ultrason. Sonochem. 2018; 40: 383–394.
  • 3. Pradhan, A.A.; Gogate, P.R. Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation. Chem. Eng. J. 2010; 156: 77–82.
  • 4. Petkovic, S.D.; Adnadjevic, B.K.; Jovanovic, J.D. A novel advanced technology for removal of phenol from wastewaters in a ventury reactor. Therm. Sci. 2019; 23: 1935–1942.
  • 5. Rajoriya, S.; Bargole, S.; George, S.; Saharan, V.K. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. J. Hazard. Mater. 2018; 344: 1109–1115.
  • 6. Badmus, K.O.; Tijani, J.; Massima, E.; Petrik, L. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environ. Sci. Pollut. Res. 2018; 25: 7299–73147.
  • 7. Wu, Z.; Yuste-Córdoba, F.J.; Cintas, P.; Wu, Z.; Boffa, L.; Mantegna, S.; Cravotto, G. 2018: Effects of ultrasonic and hydrodynamic cavitation on the treatment of cork wastewater by flocculation and Fenton processes Ultrasonics Sonochemistry 2019; 40(Part B): 38.
  • 8. Hydrodynamic cavitation as a novel approach for wastewater treatment in woodfinishing industry / Badve M., Gogate P., Pandit A., Csoka L. Separation and purification technology 2013; 106: 15–21.
  • 9. Zampeta, C.; Arvanitaki, F.; Frontistis, Z.; Charalampous, N.; Dailianis, S.; Koutsoukos, P.G.; Vayenas, D.V. Printing ink wastewater treatment using combined hydrodynamic cavitation and pH fixation Journal of Environmental Management 2022; 317: 115404.
  • 10. Zupanc, M.; Kosjek, T.; Petkovšek, M.; Dular, M.ž; Kompare, B.; Širok, B.; Blažeka, Že.; Heath, E. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment Ultrasonics Sonochemistry 2013; 20(4): 1104–1112.
  • 11. Jyoti K., Pandit A. Hybrid cavitation methods for water disinfection: simultaneous use of chemicals with cavitation. Ultrasonic Sonochemistry. Vol. 10, (2003) 255–264.
  • 12. Capocelli M., Prisciandaro M., Lancia A., Musmarra D. Comparison between Hydrodynamic and Acoustic Cavitation in Microbial Cell Disruption. Chemical Engineering Transaction 2014; 38: 13–18.
  • 13. Yi, C.; Lu, Q.; Wang, Y.; Wang, Y.; Yang, B. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation Ultra- sonics Sonochemistry 2018; 43: 156–165.
  • 14. Mancuso, G.; Langone, M.; Andreottola, G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications Journal of Environmental Health Science and Engineering 2013; 18(1): 311–333.
  • 15. Mukherjee, A.; Mullick, A.; Moulik, S.; Roy, A. Oxidative degradation of emerging micropollutants induced by rotational hydrodynamic cavitating device: A case study with ciprofloxacin. J. Environ. Chem. Eng. 2021; 9: 105652.
  • 16. Malkin, Y.S., Furtat, I.Ye., Zhuravska, N.Y., Usachov, V.P. Perspektyvy stvorennia resursozberihai- uchykh tekhnolohii shliakhom mahnitnoi obrobky vody ta vodnykh rozchyniv. Ventyliatsiia, osvitlen-nia ta vodopostachannia 2014; 17: 120–127.
  • 17. Savchenko V.V., Sinyavskyi O.Yu., Bunko V.Ya. Influence of a magnetic field on water. Energy and automation 2019; 1: 6–15.
  • 18. Wang, Y., Wei, H., Li Z. Effect of magnetic field on the physical properties of water. Results in Physics 2018; 8: 262–267.
  • 19. Ye, Y.-F.; Zhu, Y.; Lu, N.; Wang, X.; Su, Z. Treatment of rhodamine B with cavitation technology: comparison of hydrodynamic cavitation with ultrasonic cavitation RSC Advances 2021; 11(9): 5096–5106.
  • 20. Averina, Yu.M., Moiseeva, N.A., Shuvalov D.A., Nyrkov N.P., Kurbatov A.Yu. Сavitation water treatment. Water properties and processing efficiency. Advances in chemistry and chemical technology. XXXII. 2018; 14: 17–19.
  • 21. Arunan, E.; Desiraju, G.R.; Klein, R.A.; Sadlej J.; Scheiner S.; Alkorta I., et al. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem. 2011; 83(8): 1637–41.
  • 22. Leite, F.L.; Bueno, C.C.; Da Róz, A.L.; Ziemath, E.C.; Oliveira, Jr.O.N. Theoretical models for Surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 2012; 13(10): 12773. https://doi.org/10.3390/ijms131012773
  • 23. Toledo, E.J.L.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. Journal of Molecular Structure 2008; 888(1–3): 409–415.
  • 24. Wang, Y.; Zhang, B.; Gong, Z.; Gao, K.; Ou, Y.; Zhang, J. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments. Journal of Molecular Structure 2013; 1052: 102–104.
  • 25. Cai, R.; Yang, H.; He, J.; Zhu, W. The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure 2009; 938(1–3): 15–19.
  • 26. Sun, X.; Xuan, X.; Song, Y.; Jia, X.; Ji, L.; Zhao, S.; Yong Yoon, J.; Chen, S.; Liu, J.; Wang, G. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment Ultrasonics Sonochemistry 2021; 70: 105311.
  • 27. De-Nasri, S.J.; Sarvothaman, V.P.; Nagarajan, S.; Manesiotis, P.; Robertson, P.K.J.; Ranade, V.V. Quantifying OH radical generation in hydrodynamic cavitation via coumarin dosimetry: Influence of operating parameters and cavitation devices Ultrasonics Sonochemistry 2022; 90: 106207.
  • 28. Gogate, P.R.; Pandit, A.B. Application of Cavitational reactors for cell disruption for recovery of intracellular enzymes. J. Chem. Technol. Biotechnol. 2008; 83: 1083–1093.
  • 29. Tao, Y.; Cai, J.; Huai, X.; Liu, B. A novel antibiotic wastewater degradation technique combining cavitating jets impingement with multiple synergetic methods. Ultrason. Sonochem. 2018; 44: 36–44.
  • 30. Hong, F.; Tian, H.; Yuan, X.; Liu, S.; Peng, Q.; Shi, Y.; Jin, L.; Ye, L.; Jia, J.; Ying, D.; Ramsey, T. S.; Huang, Y. CFD-assisted modeling of the hydrody- namic cavitation reactors for wastewater treatment - a review Journal of Environmental Management 2022; 321: 115982.
  • 31. Hordieiev A.I. Vibrating machines for disinfection, changing the properties and composition of the water environment by hydrocavitation. Science and Technology Today (Series: Physical and Mathematical Sciences) Journal. 2022; 6(6): 427–439.
  • 32. Patent for utility model No. 128630. IPC G01N 21/3577. A method of crystal-optical analysis of the structural structure of water and the degree of its activation and contamination with biological remains / A.L. Hanzyuk, V.P. Oleksandrenko, A.I. Hordieiev, N.O. Kostyuk; u201804393; statement 04.20.2018; publ. 25.09.2018, Bul. (2018) 18.
  • 33. Patent for utility model No. 150960. IPC C02F 11/06 Method of changing the composition and properties of water by cyclic hydrodynamic cavitation. A.I. Hordieiev, A.L. Hanzyuk, O.V. Kravchuk, V.V. Kravchuk, etc. u202105913; statement 21.10.2021. рubl. 18.05.2022, Bul. (2021) 20
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-582d5015-f87b-4735-9648-117a44dd268e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.