Czasopismo
2013
|
Vol. 13, no. 1
|
128--134
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we want to study the behaviour of an underground structure subject to blast action. Other than the normal operating loads we considered the actions generated by a thermal gradient simulating the action of a fire load and by a pressure wave simulating an explosion. Initially the theoretical aspects of the problem were exanimated, and then a model was developed in numerical form and implemented through a finite element analysis. This modelling allows the simulation of a real scenario, e.g., railway tunnels with reinforced concrete structure that is subject to a fire generation and a subsequent explosion. The simulation involved aspects of thermal analysis, and therefore the structural problem was tackled analysing the tensions in the structure generated by the effect of temperature–pressure generated by the fire and by the overpressure generated by the blast. Only following this approach the most important factors influencing the dynamic response and damage of structure can be identified and the appropriate preventive measures can be designated.
Czasopismo
Rocznik
Tom
Strony
128--134
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
- Department of Mechanics and Materials, Mediterranea University of Reggio Calabria, Italy Via Graziella, Feodi Vito 89100, Reggio Calabria, Italy, michele.buonsanti@unirc.it
autor
- Department of Information, Electronics and Transport Engineering, Mediterranea University of Reggio Calabria, Italy, Via Graziella, Feodi Vito 89100, Reggio Calabria, Italy, giovanni.leonardi@unirc.it
Bibliografia
- [1] D. Manca, S. Brambilla, Complexity and uncertainty in the assessment of the Viareggio LPG railway accident, Journal of Loss Prevention in the Process Industries 2 (5) (2010) 668–679.
- [2] S. Brambilla, D. Manca, The Viareggio LPG railway accident: event reconstruction and modeling, Journal of Hazardous Materials 182 (1–3) (2010) 346–357.
- [3] J. Liu, Q. Yan, J. Wu, Analysis of blast wave propagation inside tunnel, Transactions of Tianjin University 14 (5) (2008) 358–362.
- [4] A. Skjeltorp, One-Dimensional Blast Wave Propagation, Norwegian Defence Construction Service Oslo, Oslo, Norway, 1968.
- [5] A. Skjeltorp, T. Hegdahl, A. Jenssen, Underground Ammunition Storage. Report I. Test Programme, Instrumentation, and Data Reduction, Defense Technical Information Center, Oslo, Norway, 1975.
- [6] F. Chill, A. Sala, F. Casadei, Containment of blast phenomena in underground electrical power plants, Advances in Engineering Software 29 (1) (1998) 7–12.
- [7] S. Choi, J. Wang, G. Munfakh, E. Dwyre, 3D nonlinear blast model analysis for underground structures, in: Proc. GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, ASCE, Atlanta, Georgia, United States, 2006.
- [8] H. Liu, Dynamic analysis of subway structures under blast loading, Geotechnical and Geological Engineering 27 (6) (2009) 699–711.
- [9] M. Gui, M. Chien, Blast-resistant analysis for a tunnel passing beneath Taipei Shongsan airport a parametric study, Geotechnical and Geological Engineering 24 (2) (2006) 227–248.
- [10] A. Van den Berg, J. Weerheijm, Blast phenomena in urban tunnel systems, Journal of Loss Prevention in the Process Industries 19 (6) (2006) 598–603.
- [11] S. Timoshenko, S. Woinowsky-Krieger, S. Woinowsky, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
- [12] M.H. Sadd, Elasticity, Elsevier, 2004.
- [13] L.S. Srinath, Advanced Mechanics of Solids, Tata McGraw-Hill, 2003.
- [14] C. Truesdell, Mechanics of Solids, Springer Verlag, 1973.
- [15] I. Doghri, Mechanics of Deformable Solids, Springer, 2000.
- [16] D.A. Crozier, J.G. Sanjayan, Tests of load-bearing slender reinforced concrete walls in fire, ACI Structural Journal 97 (2) (2000).
- [17] A. O’Meagher, I. Bennetts, Modelling of concrete walls in fire, Fire Safety Journal 17 (4) (1991) 315–335.
- [18] F. Pesavento, D. Gawin, C.E. Majorana, A. Witek, B. Schrefler, Modelling of thermal damaging of concrete structures during fire, in: Proceedings VII International Conference Computational Plasticity, CIMNE, 2003.
- [19] B. Schrefler, P. Brunello, D. Gawin, C. Majorana, F. Pesavento, Concrete at high temperature with application to tunnel fire, Computational Mechanics 29 (1) (2002) 43–51.
- [20] M.A. Meyers, Dynamic Behavior of Materials, Wiley-Interscience, 1994.
- [21] R.W. Gurney, The Initial Velocities of Fragments from Bombs, Shell and Grenades, U.S. Army, Aberdeen Proving Ground, Maryland, 1943.
- [22] S. Moaveni, Finite Element Analysis: Theory and Applications with ANSYS, 2003.
- [23] M. Buonsanti, G. Leonardi, F. Scoppelliti, F. Cirianni, Dynamic behavior of granular mixture solids, Key Engineering Materials 488 (2012) 541–544.
- [24] K.J. Bathe, Finite Element Procedures, Prentice-Hall, Engle-wood Cliffs, NJ, 1996.
- [25] M. Buonsanti, G. Leonardi, F. Scopelliti, 3-D simulation of shock waves generated by dense explosive in shell structures, Procedia Engineering 10 (2011) 1554–1559.
- [26] ANSYS Inc., Modeling and Meshing Guide, 2009.
- [27] E. Committee, Eurocode2: Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design,ENV. 1992-1-2, 1995.
- [28] International Organization for Standardization, ISO 834 Fire-Resistance Tests – Elements of Building Construction – Part 1: General Requirements, 1999.
- [29] European Committee for Standardization, EN 1363-2: Fire Resistance Test. Part 2: Alternative and Additional Procedures, 2000.
- [30] Forschungsgesellschaft fur Straßen - und Verkehrswesen, Richtlinien fur Ausstattung und Betrieb von Tunneln (RABT), Ausgabe, 1985.
- [31] Instituut TNO voor Bouwmaterialen en Bouwconstructies, Rapport betreffende de beproeving van het gedrag van twee isolatiematerialenter bescherming van tunnels tegen brand, Delft, The Netherlands, 1980.
- [32] D. Hyde, CONWEP, Conventional Weapons Effects Program, US Army Engineer Waterways Experiment Station, Vicksburg, USA, 1992.
- [33] M. Silvestrini, B. Genova, F. Leon Trujillo, Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries, Journal of Loss Prevention in the Process Industries 22 (4) (2009) 449–454.
- [34] Center for Chemical Process Safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires and BLEVEs, American Institute of Chemical Engineers, 1994.
- [35] C. Van Den Bosh, R. Weterings, Methods for the calculation of physical effects (Yellow Book), The Hague (NL): Committee for the Prevention of Disasters (1997).
- [36] G.J. DeSalvo, J.A. Swanson, ANSYS User’s Manual, Swanson Analysis Systems, Inc, (1979).
- [37] UNI – Ente Nazionale Italiano di Unificazione, UNI 9502:2001 analytical fire resistance assessment of reinforced concrete and prestressed concrete structural elements, UNI, Milano, Italy, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5829e56c-fdc4-4599-b55f-a18d02fcc354