Czasopismo
2023
|
Vol. 19, no. 1
|
87--95
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The positronium imaging technique represents a potential enhancement of the PET imaging method. Its core principle involves employing a β+ radiation source that emits additional gamma (γ) quanta referred to as prompt gamma. Our aim is to evaluate the capability to differentiate between annihilation and prompt gamma emissions, a vital aspect of positronium imaging. For this purpose, the selected isotopes should enable high efficiency and purity in detecting both prompt gamma and annihilation gamma. The assessment of the efficiency in identifying prompt and annihilation photons for various isotopes, which are potentially superior candidates for β++ γ emitters, is conducted through toy Monte-Carlo simulation utilizing the cross-section formula for photon-electron scattering. In this article, we have performed calculations for efficiency and purity values across different isotopes under ideal conditions and examined how these values evolve as we incorporate the fractional energy resolution into the analysis. Ultimately, the primary goal is to determine the energy threshold that optimizes both efficiency and purity, striking a balance between accurately identifying and recording events of interest while minimizing contamination from undesired events.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
87--95
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- 2Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Krakow, Poland
autor
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
- 1. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems 2021;17:203-12.
- 2. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys. 2020;7:1-33.
- 3. Moskal P, Positronium Imaging, 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, UK, 2019; pp. 1-3. https://ieeexplore.ieee.org/document/9059856.
- 4. Moskal P, Stępień E. Perspectives on translation of positronium imaging into clinics. Front. Phys. 2022;10: 969806.
- 5. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys. Med. Biol. 2019;64:055017.
- 6. Moskal P, Kisielewska D, Y. Shopa R, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2 γpositronium imaging with the total-body pet scanners. EJNMMI Phys. 2020;7(1):44.
- 7. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel Multiphoton Pet Scanner. Sci. Adv. 2021;7(42):eabh4394.
- 8. Karimi H, Moskal P, Żak A, Stępień E. 3D melanoma spheroid model for the development of positronium biomarkers. Sci Rep. 2023;13:7648.
- 9. Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, et al. Developing a novel positronium biomarker for Cardiac Myxoma Imaging. EJNMMI Phys. 2023;10(1):22.
- 10. Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clinics 2020;15:439-52.
- 11. Sitarz M, Jean-Pierre Cussonneau, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: An overview. Appl Radiat Isot 2020;155:108898-8.
- 12. Uenomachi M, Shimazoe K, Takahashi H. A double photon coincidence detection method for medical gamma-ray imaging. Bio-Algorithms and Med-Systems 2022;18:120-6.
- 13. Fukuchi T, Shigeta M, Haba H, Mori D, T. Yokokita, Komori Y, et al. Image reconstruction method for dual-isotope positron emission tomography. J. Instrum. 2021;16:P01035-5.
- 14. Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, et al. Simultaneous quantitative imaging of two pet radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat. Biomed. Eng. 2023;7(8):1028-39.
- 15. Beyene EY, Das M, Durak-Kozica M, Korcy G, Mryka W, Niedzwiecki S, et al. Exploration of simultaneous dual-isotope imaging with multi-photon modular J-PET scanner. Bio-Algorithms and Med-Systems. 2023;19:101-8.
- 16. Andreyev A, Celler A. Dual-isotope PET using positron-gamma emitters. Phys. Med. Biol. 2011;56:4539-56.
- 17. Kadrmas DJ, Hoffman JM. Methodology for Quantitative Rapid Multi-Tracer PET Tumor Characterizations. Theranostics 2013;3:757-73.
- 18. Moskal P, Niedźwiecki Sz, Bednarski T, Czerwiński E, Kapłon, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2014;764:317-21.
- 19. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-pet: A new technology for the whole-body pet imaging. Acta Phys. Pol. B 2017;48(10):1567.
- 20. Korcyl G, Hiesmayr BC, Jasinska B, Kacprzak K, Kajetanowicz M, Kisielewska D, et al. Evaluation of single-chip, real-time tomographic data processing on FPGA SOC devices. IEEE Trans Med Imaging. 2018;37(11):2526-35.
- 21. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat. Rev. Phys 2019;1:527-9.
- 22. Bass SD, Mariazzi S, Moskal P, Stępień E. Colloquium: Positronium physics and biomedical applications. RMP 2023;95:021002.
- 23. Jasińska B, Zgardzińska B, Chołubek G, Pietrow M, Gorgol M, Wiktor K, et al. Human tissue investigations using pals technique - free radicals influence. Acta Phys. Pol. 2017;132(5):1556-9.
- 24. Dulski K, on behalf of the J-PET collaboration on. PALS Avalanche - A New PAL Spectra Analysis Software. Acta Phys. Pol. 2020;137:167-70.
- 25. Shibuya K, Saito H, Tashima H, Yamaya T. Using inverse Laplace transform in positronium lifetime imaging. Phys. Med. Biol. 2022;67:025009.
- 26. Qi J, Huang B. Positronium Lifetime Image Reconstruction for TOF PET. IEEE Trans Med Imaging 2022;41(10):2848-55.
- 27. Huang H-H, Zhu Z, Booppasiri S, Chen Z, Pang S, Kao C-M. A statistical reconstruction algorithm for positronium lifetime imaging using time-of-flight positron emission tomography [Preprint]. 2023 [posted 2022 Jun 13; revised 2022 Jul 21; revised 2023 Mar 5; revised 2023 Nov 22; cited 2023 Dec 19]. Available from: https://arxiv.org/abs/2206.06463v4.
- 28. Mryka W, Manish Das M, Beyene EY, Moskal P, Stępień E, On behalf of J-PET collaboration. Estimating influence of positron range in proton therapy beam monitoring with PET. Bio-Algorithms and Med-Systems. 2023;19:96-100.
- 29. Kertész H, Beyer T, Panin V, Jentzen W, Cal-González J, Berger A, et al. Implementation of a Spatially-Variant and Tissue-Dependent Positron Range Correction for PET/CT Imaging. Front. Physiol. 2022;13:818463.
- 30. International Atomic Energy Agency (IAEA), livechart of nuclides [Internet]. Available from: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
- 31. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 2016;3(1):8.
- 32. George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021;11:31098-123.
- 33. Matulewicz T, Radioactive nuclei for β + γ PET and theranostics: selected candidates. Bio-Algorithms and Med-Systems 2021;17:235-9.
- 34. Masełek R, Krzemien W, Klimaszewski K, Raczyński L, Kowalski P, Shopa R, et al. Towards 2+1 photon tomography: Energy-based selection of two 511 kev photons and a prompt photon with the J-pet scanner [Internet]. 2018 [posted 2018 March 2; cited 2023 Dec 19]. Available from: https://doi.org/10.48550/arXiv.1803.00996.
- 35. Beekman FJ, Kamphuis C, Koustoulidou S, Ramakers RM, Goorden MC. Positron range-free and multi-isotope tomography of positron emitters. Phys. Med. Biol. 2021;66:065011-1.
- 36. Thirolf PG, Lång C, Parodi K. Perspectives for Highly-Sensitive PET-Based Medical Imaging Using β+γ Coincidences. Acta Phys. Pol. 2015;127:1441-4.
- 37. Nelms AT, Graphs of the Compton Energy-Angle Relationship and the Klein-Nishina Formula from 10 KeV to 500 MeV. Phys. Today 1954;7:18.
- 38. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat. Commun 2021;12(1):5658.
- 39. Lång C, Habs D, Parodi K, Thirolf PG. Sub-millimeter nuclear medical imaging with high sensitivity in positron emission tomography using β+γ coincidences. J. Instrum. 2014;9:P01008-8.
- 40. Martin CC, Christian BT, Satter MR, Nickerson LDH, Nickles RJ. Quantitative PET with positron emitters that emit prompt gamma rays. IEEE Trans Med Imaging 1995;14:681-7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5829df33-8b03-44f6-8c62-d9ff5dc8cafb