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ABSTRACT 

A 2×2 MIMO wireless communication system with channel estimation is simulated, in 

which two transmit, and two receive antennas are employed. The orthogonal pilot signal approach 

is used for the channel estimation, where the Hadamard sequences are used for piloting. Data are 

modulated by coherent binary phase-shift keying, whereupon an orthogonal space-time block cod-

ing subsystem encodes information symbols by using the Alamouti code. Based on the simulation, 

it is ascertained a possibility to decrease the bit-error rate by substituting the Hadamard sequences 

for the sequences having irregular structures, and constituting the eight known orthogonal bases. 

Considering a de-orthogonalization caused by two any pilot sequence symbol errors, the bit-error 

rate is decreased by almost 2.9 %. If de-orthogonalizations are caused by two repeated indefinite, 

and definite pilot sequence symbol errors, the decrements are almost 16 % and 10 %, respectively. 

Whichever sequences are used for piloting, the 2×2 MIMO system is ascertained to be resistant to 

the de-orthogonalization if the frame is of 128 to 256 symbols piloted with 32 to 64 symbols, re-

spectively. 
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INTRODUCTION 

In radio, multiple-input and multiple-output (MIMO) specifically refers to  

a practical technique for sending and receiving more than one data signal simultane-

ously, over the same radio channel by exploiting multipath propagation. More gen-

erally, MIMO is a method for multiplying the capacity of a radio link by using multiple 

antennas at the transmitter and receiver ends of a wireless communication system 

[2]. MIMO systems are increasingly being adopted in wireless communication stand-

ards, including IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-Fi), HSPA+ (3G), WiMAX, 

and Long Term Evolution (4G LTE), for the potential gains in capacity they realize 

when using multiple antennas. Multiple antennas use the spatial dimension in addi-

tion to the time and frequency ones, without changing the bandwidth requirements 

of the system [14]. 

When multiple transmitter antennas are used, the concept of orthogonal 

space-time block coding (OSTBC) is employable [4]. An OSTBC subsystem encodes 

information symbols from a modulator by using, either the Alamouti code [1] for two 

transmit antennas, or other generalized complex orthogonal codes [11] for three, or 

four transmit antennas. To know how a signal propagates from the transmitter to 

the receiver, and represents the combined effect of scattering, fading, and power de-

cay with distance, the channel state information is required. The channel state infor-

mation makes it possible to adapt transmissions to current channel conditions, 

which is crucial for achieving reliable communication with high data rates in multi-

antenna systems. In the realistic scenario, where the channel state information is not 

known at the receiver, this has to be extracted from the received signal. The channel 

estimator can perform this by using orthogonal pilot signals that are prepended to 

every packet [5]. Compared to a blind approach, where the estimation is based only 

on the received data, without any known transmitted sequence, the tradeoff is the 

accuracy versus the overhead. The orthogonal pilot signal approach has a higher 

overhead than the blind approach, but it achieves a better channel estimation accu-

racy than the blind approach [16]. 

However, in practice, orthogonal pilot sequences, from which the channel 

between the transmitter and receiver is estimated, are limited by the coherence time 

of the channel. Most importantly, the reuse of pilot sequences of several co-channel 

cells may create pilot contamination that worsens the MIMO performance [9]. An-

other problem is that a loss of a symbol in a pilot sequence (due to channel noise and 

interference) leads to de-orthogonalization. Obviously, the pilot signal de-orthogo-

nalization may also worsen the MIMO performance [3]. 
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MOTIVATION 

Orthogonalization is a crucially important property used in wireless commu-

nication systems to increase capacity of a radio channel without badly affecting its 

reliability. In MIMO, orthogonal codes are usually taken from the Hadamard matrix 

[12], where the first orthogonal sequence of pilot symbols is the sequence of ones. In 

fact, it is the Walsh function of the zeroth order, which is a function-constant [13]. In 

particular, Walsh functions are generated from the Hadamard matrix [15], and can 

be used as well for other transmit antennas. 

Walsh functions have a regular structure as they are mirror-symmetrical 

(considering from the middle of the unit interval on which the functions are  

defined). Similar binary functions having irregular structures (IS), and constituting 

orthogonal sets are known also (e. g., see [6]). The eight orthogonal bases of such 

irregular-structure binary functions (considering the seven non-zeroth-order func-

tions in every basis; the function-constant, which is the zeroth-order function in 

every basis, is not considered) found by Romanuke [7] were simulated to substitute 

the respective Walsh functions in wireless communication systems with the code di-

vision multiple access (CDMA). It was shown in [8] that these orthogonal sets of  

binary functions outperform Walsh set, where the bit-error rate (BER) is decreased 

by 3 % to 5 %. It is naturally assumed that BER in MIMO systems with the orthogonal 

pilot signal approach might be decreased by using the similar substitution. 

The assumption is to be verified on a 2×2 MIMO system with channel esti-

mation, in which two transmit, and two receive antennas, are employed. It is as-

sumed that the channel remains unchanged for the length of the packet (i. e., it 

undergoes slow fading), and the channel undergoes independent fading between the 

multiple transmit-receive antenna pairs. Data are modulated by coherent binary 

phase-shift keying (BPSK) [10]. Then OSTBC by Alamouti is applied to the modulated 

data and the signal is passed over flat-fading Rayleigh channels [12]. 

The goal is to estimate the BER performance of a 2×2 MIMO system with 

channel estimation by the orthogonal pilot signal approach for both the Hadamard 

and Romanuke orthogonal codes. The case of a symbol loss (or, in other words, 

a symbol error) in a pilot sequence (that implies a de-orthogonalization) is to be 

studied as well. For this, various situations are to be considered: de-orthogonaliza-

tion caused by one and two pilot sequence symbol errors, where subcases of symbol 

definiteness and repeatability should be simulated. 
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BPSK-OSTBC SIMULATION PARAMETERS 

The simulation is based on MATLAB® R2019a Communications System 

ToolboxTM functions covering an end-to-end 2×2 MIMO system. The fundamental pa-

rameters for simulating BPSK and OSTBC are as follows: frame length F , number of 

pilot symbols per frame P , bit-energy-to-noise-density ratio (BENDR) Eb/Nor  in dB, 

maximum number of errors 
errm , maximum number of packets packN . The simula-

tion is run over a range of BENDR points to generate BER results that allow compar-

ing different cases. 

It is reasonable to vary BENDR from 0 dB to 6 dB with a step of 1 dB. The 

frame length is equal to 32, 64, 128, 256 symbols. The number of pilot symbols per 

frame cannot exceed 25 % of the frame length, so it is set according to tab. 1. 

 

Tab. 1. The 10 cases of the parameter pair of the frame length and pilot symbols per frame 

F  32 64 128 256 frame length  

P  8 8 8 8 

number of  

pilot symbols 

per frame 

 P  16 16 16 

  P  32 32 

   P  64 

 

For the 2×2 MIMO system, the two Hadamard orthogonal sequences, regard-

less of the number of pilot symbols per frame, have the view presented in fig. 1. In 

fact, these are the Walsh functions of the zeroth order and ( 1P − )-th order (i. e., the 

last function in the Walsh basis of functions corresponding to P –positioned orthog-

onal codes). The IS binary functions (ISBFs) by Romanuke shown in fig. 2 have the 

same function-constant, so it is better to use the last two functions from each basis 

of P  functions (fig. 3). 

The above-mentioned de-orthogonalization occurs when the negative value 

of a binary function is dropped into the positive value, and vice versa. These pilot 

sequence symbol errors are notationally referred to as “0→1” and “1→0”, respec-

tively. To estimate the BER performance under circumstances of imperfect orthogo-

nality, the six cases (tab. 2) are to be simulated for both the Hadamard and 

Romanuke orthogonal codes. The number of BPSK-OSTBC simulations should be suf-

ficiently great for obtaining stable results. The stability of these results is expected 

to be confirmed by carrying out another series of simulations. 
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Fig. 1. The two Hadamard orthogonal sequences for different cases of pilot symbols per frame 
 

Tab. 2. The six cases to be simulated 

 

case # Description 
Notation of pilot sequence 

symbol errors 

1 Without de-orthogonalization 
there are no pilot sequence 

symbol errors 

2 
De-orthogonalization caused by one indefinite pilot  

sequence symbol error 
“0→1” or “1→0” 

3 
De-orthogonalization caused by one definite pilot  

sequence symbol error 
“0→1” 

4 
De-orthogonalization caused by two repeated indefinite 

pilot sequence symbol errors 

“0→1” and “0→1”  

or “1→0” and “1→0” 

5 
De-orthogonalization caused by two repeated definite  

pilot sequence symbol errors 
“0→1” and “0→1” 

6 
De-orthogonalization caused by two indefinite pilot  

sequence symbol errors 

“0→1” and “0→1”,  

or “1→0” and “1→0”,  

or “1→0” and “0→1”,  

or “0→1” and “1→0” 

+1
-1
+1
-1

Frame length = 32, Pilot symbols = 8

+1
-1
+1
-1

Frame length = 64, Pilot symbols = 8

+1
-1
+1
-1

Frame length = 64, Pilot symbols = 16

+1
-1
+1
-1

Frame length = 128, Pilot symbols = 8

+1
-1
+1
-1

Frame length = 128, Pilot symbols = 16

+1
-1
+1
-1

Frame length = 128, Pilot symbols = 32

+1
-1
+1
-1

Frame length = 256, Pilot symbols = 8

+1
-1
+1
-1

Frame length = 256, Pilot symbols = 16

+1
-1
+1
-1

Frame length = 256, Pilot symbols = 32

+1
-1
+1
-1

Frame length = 256, Pilot symbols = 64



Vadim Romanuke 

48  Scientific Journal of PNA 

 

Fig. 2. The eight orthogonal bases presented for the case of 64-positioned orthogonal codes [13] 
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Fig. 3. The last two orthogonal basis-wise sequences for different cases of pilot symbols per frame 
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To obtain statistically reliable simulation of the 10 cases of pilot symbols per 

frame and frame length (tab. 1), it is reasonable to set pack err10N m= . The two Hada-

mard orthogonal sequences to be used for the simulation are taken as they are 

shown in fig. 1. The two IS orthogonal sequences (in each of the eight bases) to be 

used for the simulation are taken as they are shown in fig. 3. 

SIMULATION RESULTS 

Considering the perfect orthogonality, i. e. case #1 in tab. 2, the substitution 

of the Hadamard sequences (fig. 1) for the IS sequences (by ISBFs in fig. 3) gives no 

gain. The de-orthogonalization caused by one indefinite pilot sequence symbol error 

(case #2) cannot be rectified by the substitution as well. The BER performance for 

pack 500000N =  is shown in fig. 4 for this case, where the circled points (IS sequences 

for the de-orthogonalization case), and squared points (Hadamard sequences for the 

de-orthogonalization case) are plotted along with the dotted points (IS sequences 

for case #1) and asterisked points (Hadamard sequences for case #1). The BER per-

formance for pack 500000N =  shown in fig. 5 (with the same point markers, which will 

be used further) for case #3 is similar to that. Those polylines re-plotted for 

pack 250000N =  for case #2 (fig. 6) and case #3 (fig. 7) are almost repeated, so the 

results are statistically consistent and thus reliable. The averaged BER performance 

for these cases are presented in fig. 8 and fig. 9, where the difference between the 

perfect orthogonality and de-orthogonalization is clear. 

In case #4, the BER performance by the Hadamard sequences is improved 

by the IS sequences (fig. 10). This improvement is even more obvious for case #5 

(fig. 11). Those polylines re-plotted for pack 250000N =  for case #4 (fig. 12), and case 

#5 (fig. 13) are almost repeated, so the results are statistically consistent, and thus 

reliable. The averaged BER performance for these cases are presented in fig. 14 and 

fig. 15. In case #4, the BER is decreased by almost 10 % on average by using the IS 

sequences. In case #5, the BER is decreased by almost 16 % on average. 

In case #6, the BER performance by the Hadamard sequences is improved 

by the IS sequences (fig. 16), although the improvement is less obvious than in cases 

#4 and #5. This is confirmed by re-simulating it for pack 250000N =  (fig. 17). On av-

erage, the BER is decreased by almost 2.9 % (fig. 18). 
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Fig. 4. The BER performance versus BENDR by one indefinite pilot symbol error de-orthogonali-

zation (“0→1” or “1→0”) for the first series of maximum 500000 packets 
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Fig. 5. The BER performance versus BENDR by one definite pilot symbol error de-orthogonaliza-

tion (“0→1”) for the first series of maximum 500000 packets 
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Fig. 6. The BER performance versus BENDR by one indefinite pilot symbol error de-orthogonali-

zation (“0→1” or “1→0”) for the second series of maximum 250000 packets 
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Fig. 7. The BER performance versus BENDR by one definite pilot symbol error de-orthogonaliza-
tion (“0→1”) for the second series of maximum 250000 packets 
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Fig. 8. The averaged BER performance versus BENDR by one pilot symbol error de-orthogonali-

zation (cases #2 and #3) for the first series of maximum 500000 packets 

 

 

Fig. 9. The averaged BER performance versus BENDR by one pilot symbol error de-orthogonali-

zation (cases #2 and #3) for the second series of maximum 250000 packets 
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Fig. 10. The BER performance versus BENDR by two repeated indefinite pilot symbol error  

de-orthogonalization (twice “0→1” or “1→0”) for the first series of maximum 500000 packets 
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Fig. 11. The BER performance versus BENDR by two repeated definite pilot symbol error  
de-orthogonalization (“0→1” and “0→1”) for the first series of maximum 500000 packets 
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Fig. 12. The BER performance versus BENDR by two repeated indefinite pilot symbol error  
de-orthogonalization (twice “0→1” or “1→0”) for the second series of maximum 250000 packets 
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Fig. 13. The BER performance versus BENDR by two repeated definite pilot symbol error  
de-orthogonalization (“0→1” and “0→1”) for the second series of maximum 250000 packets 
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Fig. 14. The averaged BER performance versus BENDR by two repeated pilot symbol error  

de-orthogonalization (cases #4 and #5) for the first series of maximum 500000 packets 

 

 

Fig. 15. The averaged BER performance versus BENDR by two repeated pilot symbol error  

de-orthogonalization (cases #4 and #5) for the second series of maximum 250000 packets 
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Fig. 16. The BER performance versus BENDR by two indefinite pilot symbol error de-orthogonali-

zation for the first series of maximum 500000 packets 
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Fig. 17. The BER performance versus BENDR by two indefinite pilot symbol error de-orthogonali-

zation for the second series of maximum 250000 packets 
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Fig. 18. The averaged BER performance by two indefinite pilot symbol error de-orthogonalization 
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herein is unacceptable. Moreover, cases (1) confirm that increasing the frame length 

does not give necessarily a gain in the BER performance. Indeed, comparison of the 

respective BER polylines for cases (1) in fig. 4 – 7 reveals that they are almost un-

changeable. Noticeable changes are in fig. 10 – 13, but they are not very significant. 

Weakly-varying polylines for cases (1) are also seen in fig. 16 and fig. 17. 

Despite the one pilot symbol de-orthogonalization does have a negative im-

pact on the BER performance, it becomes apparent only for cases (1) and, with less 

significance, for cases 

 { }64, 16F P= = , { }128, 16F P= = , { }256, 16F P= = . (2) 

The one pilot symbol de-orthogonalization still increases the BER for cases 

 { }128, 32F P= = , { }256, 32F P= = , { }256, 64F P= =  (3) 

at Eb/No 3r <  dB, but it is hardly noticeable. The least BER itself is obtained for case 

 { }256, 64F P= =  (4) 

corresponding to a 2×2 MIMO system transferring long frames with a maximum  

information for channel estimation. This is easily confirmed by fig. 4 – 7, 10 – 13,  

16, 17. 

By the two repeated pilot symbol error de-orthogonalization, the BER is ef-

ficiently decreased by substituting the Hadamard sequences for the IS sequences for 

cases (1), that is clearly seen in fig. 10 – 13. In the case of the two repeated definite 

pilot symbol error de-orthogonalization, the gap between the Hadamard sequences 

polylines (squared points), and IS sequences polylines (circled points) is bigger. Nev-

ertheless, it does not mean that the IS sequences are less effective in the case of the 

two repeated indefinite pilot symbol error de-orthogonalization. In fact, when the 

definite symbol is lost twice (in case #5, it is an inversion to the value of the function-

constant, i. e., “0→1”), the performance by the Hadamard sequences becomes poorer 

than that by the IS sequences (compare fig. 10 to fig. 11, and fig. 12 to fig. 13, and also 

the left subplots to the right subplots in both fig. 14 and fig. 15). The gaps are signif-

icantly smaller for cases (2), in the both cases of the two repeated pilot symbol error 

de-orthogonalization (cases #4 and #5 in fig. 10 – 13). For cases (3), the gaps be-

tween the Hadamard sequences and IS sequences polylines are hardly noticeable 

(without zooming in on the respective polylines). However, some tiny gaps exist just 

for cases 

 { }128, 32F P= =  and { }256, 32F P= =  (5) 
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whereas there are no gaps for case (4). The same inference is made from fig. 16 and 

fig. 17 for the two indefinite pilot symbol error de-orthogonalization (case #6). 

Moreover, the polylines in the respective subplots for cases (3) do not have any dif-

ference from the respective polylines (it is better to pay attention to asterisked 

points) in fig. 4 – 7. Therefore, 2×2 MIMO systems transferring long frames with  

a maximum information for channel estimation are resistant to partial de-orthogo-

nalization in pilot signals. The accuracy-versus-overhead tradeoff herein is likely to 

be acceptable. 

Surely, in the realistic scenario, the pilot signal de-orthogonalization is 

highly probable. However, the considered de-orthogonalization cases (tab. 2) are not 

equiprobable. Considering only one pilot sequence symbol error, case #3 is 50 % 

probable. If to consider possibility of two pilot sequence symbol errors, cases #2 and 

#6 are complementary events. They can be counted equiprobable. Consequently, 

case #3 is then 25 % probable, case #4 is 25 % probable, and case #5 is then 12.5 % 

probable. 

CONCLUSIONS 

In 2×2 MIMO systems with channel estimation by the orthogonal pilot signal 

approach, it is possible to improve the BER performance by substituting the Hada-

mard sequences for the IS sequences. The improvement is estimated as a BER aver-

age decrement. The decrement is almost 10 % in the case of a de-orthogonalization 

caused by two repeated indefinite pilot sequence symbol errors. The probability of 

this case is estimated at 25 % rate. In the case of a de-orthogonalization caused by 

two repeated definite pilot sequence symbol errors, which is 12.5 % probable, the 

decrement is almost 16 %. Considering two any pilot symbol errors, whose proba-

bility is estimated at 50 % rate, the BER is decreased by almost 2.9 %. 

Whichever sequences are used for piloting, the 2×2 MIMO system is resistant 

to the de-orthogonalization if the frame is of 128 to 256 symbols piloted with 32 to 

64 symbols, respectively. The accuracy-versus-overhead tradeoff is thus optimized. 

A further research might be directed towards optimizing MIMO systems in which  

a greater number of transmit and receive antennas are employed. 
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P O N O W N A  O R T O G O N A L I Z A C J A  P O  B Ł Ę D A C H  

S Y M B O L I  P I L O T U J Ą C Y C H  W  S Y S T E M A C H  K O -

M U N I K A C J I  B E Z P R Z E W O D O W E J  2 × 2  M I M O  

STRESZCZENIE 

W pracy przedstawiono symulowany system komunikacji bezprzewodowej 2×2 MIMO  

z oszacowaniem kanału, składający się z dwóch anten nadawczych i dwóch anten odbiorczych. W 

procesie szacowania kanału zastosowano podejście ortogonalnego sygnału pilotującego z wyko-

rzystaniem sekwencji Hadamarda. Na potrzeby badań symulacyjnych przyjęto modulowanie da-

nych za pośrednictwem spójnego binarnego kluczowania z przesunięciem fazowym, podczas gdy 

ortogonalny podsystem kodowania bloków czasoprzestrzennych odpowiedzialny był za kodowa-

nie informacji z wykorzystaniem kodu Alamouti. Na podstawie symulacji ustalono możliwość 

zmniejszenia współczynnika błędnych bitów przez zastąpienie sekwencji Hadamarda sekwen-

cjami należącymi do ośmiu znanych baz ortogonalnych i charakteryzującymi się nieregularnymi 

strukturami. W przypadku deortogonalizacji wynikającej z dwóch dowolnych błędów symboli se-

kwencji pilotujących, współczynnik ten został zmniejszony o prawie 2.9 %. Jeśli deortogonalizacje 

są spowodowane przez dwa powtarzające się błędy symboli sekwencji pilotujących, nieokreślone 

i określone błędy uległy zmniejszeniu o odpowiednio 10 % i 16 %. Bez względu na to, które se-

kwencje zostały użyte do pilotowania, wykazano odporność systemu 2×2 MIMO na deortogonali-

zację w przypadku, gdy ramka zawierała od 128 do 256 symboli, a rozmiar sekwencji pilotującej 

mieścił się w zakresie od 32 do 64 symboli. 

Słowa kluczowe:  

komunikacja bezprzewodowa, estymacja kanału, MIMO, ortogonalne sekwencje pilotujące, 

współczynnik błędnych bitów. 


