Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | Vol. 71, no. 5 | 2481--2496
Tytuł artykułu

Optimized simulation of river flow rate using regression-based models

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Given the extreme values of rainfall in recent years and the increase in floods, data-driven models must also be optimized to be able to simulate the maximum and minimum values of extreme events well. Therefore, in this study, to simulate the daily river flow rate in the upstream stations of Bukan reservoir in northwestern Iran and south of Urmia Lake, an optimized nonlinear support vector regression model has been used. This model is optimized by various algorithms such as antlion optimizer (ALO), ant colony optimizer (ACO), multiverse optimizer (MVO) and salp swarm algorithm (SSA) to provide better results. Based on this, the accuracy of the four algorithms was evaluated using different criteria. The number of iterations, training and testing sets were considered fixed in all four algorithms. The results showed that according to the Nash–Sutcliffe efficiency, the performance of all four algorithms in simulating the daily flow rate is acceptable, which is also confirmed in the violin plots presented in the two phases of training and testing. The error rate calculated by the root-mean-square error statistic showed that the error rate of the antlion algorithm is less than other studied algorithms. The antlion algorithm was able to reduce the simulation error by about 11% on average in all studied stations by optimizing the parameters of the support vector regression model. Compared to ACO, MVO and SSA algorithms, ALO algorithm was able to reduce the error rate of optimized nonlinear support vector regression model in simulation of daily river flow rate by 11.5, 12.4 and 9.3%, respectively, in the test phase in studied station. Also, with the development of support vector regression model, the maximum daily discharge points in the studied stations were simulated well, and a good correlation was observed between the observed and simulated values. The developed support vector regression model has no limitations in different regions and different climates due to the use of optimization algorithms.
Wydawca

Czasopismo
Rocznik
Strony
2481--2496
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Abbasi M, Dehban H, Farokhnia A, Roozbahani R, Bahreinimotlagh M (2022) Long-term streamflow prediction using hybrid svr-ann based on bayesian model averaging. J Hydrol Eng 27(11):05022018
  • 2. Ahmadi F, Nazeri Tahroudi M, Mirabbasi R, Kumar R (2022) Spatiotemporal analysis of precipitation and temperature concentration using PCI and TCI: a case study of Khuzestan Province Iran. Theor Appl Climatol 149(2):743. https://doi.org/10.1007/s00704-022-04077-6
  • 3. Anderson PAV, & Bone Q (1980). Communication between individuals in salp chains. II. Physiology. Proceedings of the Royal Society of London. Series B. Biological Sciences, 210(1181), 559–574.
  • 4. Back T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press
  • 5. Baydaroğlu Ö, Koçak K, Duran K (2018) River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorol Atmos Phys 130(3):349–359
  • 6. Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on metaheuristics for stochastic combinatorial optimization. Nat Comput 8(2):239–287
  • 7. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373
  • 8. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151
  • 9. Colorni A, Dorigo M, & Maniezzo V (1991). Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life (Vol. 142, pp. 134–142).
  • 10. Dehghanipour AH, Moshir Panahi D, Mousavi H, Kalantari Z, Tajrishy M (2020) Effects of water level decline in Lake Urmia, Iran, on local climate conditions. Water 12(8):2153
  • 11. Deneubourg JL, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the argentine ant. J Insect Behavior 3(2):159–168
  • 12. Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2):137–172
  • 13. Dorigo M, & Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470–1477). IEEE.
  • 14. Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161
  • 15. Eberhart R, & Kennedy J (1995). A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39–43). Ieee.
  • 16. Eslami P, Nasirian A, Akbarpour A, Nazeri Tahroudi M (2022) Groundwater estimation of ghayen plain with regression-based and hybrid time series models. Paddy Water Environ 20(3):429
  • 17. Eslamitabar V, Ahmadi F, Sharafati A, Rezaverdinejad V (2022) Bivariate simulation of river flow using hybrid intelligent models in sub-basins of Lake Urmia Iran. Acta Geophys. https://doi.org/10.1007/s11600-022-00933-1
  • 18. Granata F, Di Nunno F, de Marinis G (2022) Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamflow forecasting: a comparative study. J Hydrol 613:128431
  • 19. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72
  • 20. Holland JH, Reitman JS (1977) Cognitive systems based on adaptive algorithms. ACM Sigart Bull 63:49–49
  • 21. Hoos HH, Stützle T (2004) Stochastic local search: foundations and applications. Elsevier
  • 22. Hussain D, Khan AA (2020) Machine learning techniques for monthly river flow forecasting of Hunza River. Pakistan Earth Sci Inform 13(3):939–949
  • 23. Kalteh AM (2015) Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting. Water Resour Manage 29(4):1283–1293
  • 24. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471
  • 25. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289
  • 26. Khalili K, Tahoudi MN, Mirabbasi R, Ahmadi F (2016) Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stoch Env Res Risk Assess 30(4):1205–1221
  • 27. Khoury J, Ovrut BA, Seiberg N, Steinhardt PJ, Turok N (2002) From big crunch to big bang. Phys Rev D 65(8):086007
  • 28. Khozeymehnehad H, Safavi M, Amirabadizadeh M, Nazeri Tahroudi M (2022) Evaluation of data-driven models based on downscaling of daily temperature values. Irrig Water Eng 12(4):274–291
  • 29. Meydani A, Dehghanipour A, Schoups G, Tajrishy M (2022) Daily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling: application to Urmia Lake basin Iran. J Hydrol: Reg Stud 44:101228
  • 30. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
  • 31. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
  • 32. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191
  • 33. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290
  • 34. Nazeri Tahroudi M, Khalili K, Ahmadi F, Mirabbasi R, Jhajharia D (2019a) Development and application of a new index for analyzing temperature concentration for Iran’s climate. Int J Environ Sci Technol 16(6):2693–2706
  • 35. Nazeri Tahroudi M, Pourreza-Bilondi M, Ramezani Y (2019b) Toward coupling hydrological and meteorological drought characteristics in Lake Urmia Basin Iran. Theor Appl Climatol 138(3):1511–1523
  • 36. Nazeri Tahroudi M, Mirabbasi R, Ramezani Y, Ahmadi F (2022) Probabilistic assessment of monthly river discharge using copula and OSVR approaches. Water Resour Manage 36(6):2027–2043
  • 37. Nazeri-Tahroudi M, Ramezani Y (2020) Estimation of dew point temperature in different climates of iran using support vector regression. IDŐJÁRÁS/Q J Hung Meteorol Serv 124(4):521–539
  • 38. Piri J, Pirzadeh B, Keshtegar B, Givehchi M (2021) A hybrid statistical regression technical for prediction wastewater inflow. Comput Electron Agric 184:106115
  • 39. PP Grassé (1959) La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp la théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Soc 6(1):41–80
  • 40. Rahbar A, Mirarabi A, Nakhaei M, Talkhabi M, Jamali M (2022) A comparative analysis of data-driven models (SVR, ANFIS, and ANNs) for daily karst spring discharge prediction. Water Resour Manage 36(2):589
  • 41. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11(8):5508–5518
  • 42. Raji M, Tahroudi MN, Ye F, Dutta J (2022) Prediction of heterogeneous fenton process in treatment of melanoidin-containing wastewater using data-based models. J Environ Manage 307:114518
  • 43. Samadianfard S, Jarhan S, Salwana E, Mosavi A, Shamshirband S, Akib S (2019) Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water 11(9):1934
  • 44. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manage 120(4):423–443
  • 45. Spall JC (2005) Introduction to stochastic search and optimization: estimation, simulation, and control. John Wiley & Sons
  • 46. Talbi EG (2009) Metaheuristics: from design to implementation. John Wiley & Sons
  • 47. Tegmark M. (2004). In: Barow, JD, Davies, PCW, and Harper, CL, Jr,(eds). Science and Ultimate Reality.
  • 48. Yang XS (2010a) Firefly algorithm, Levy flights and global optimization. In Research and Development In Intelligent Systems XXVI
  • 49. Yang XS (2010b) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspir Comput 2(2):78–84
  • 50. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343
  • 51. Yang XS, & Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World Congress On Nature & Biologically Inspired Computing (NaBIC) (pp. 210–214). Ieee.
  • 52. Zaini N, Malek MA, Yusoff M, Mardi NH, & Norhisham S (2018) Daily river flow forecasting with hybrid support vector machine–particle swarm optimization. In: IOP Conference Series: Earth Environ Sci (Vol. 140, No. 1, p. 012035). IOP Publishing.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-574fdb44-4a69-4bd6-a546-94fb2d3a18f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.