Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 14, No. 2 | 123--130
Tytuł artykułu

Determination of the flow stress model of AZ80 Mg alloy

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Wyznaczanie modelu naprężenia uplastyczniającego dla stopu magnezu AZ80
Języki publikacji
EN
Abstrakty
EN
The flow stress model of AZ80 Mg alloy, whose grain size is approximately 30 μm, is created by interpreting the experimental results with the inverse analysis. Compression tests were conducted at temperatures of 523, 573 and 623 K and at strain rates of 0.01, 0.1 and 1 s"'. On the basis of the test results, the flow stress model of the Mg alloy was determined. As candidates of the flow stress model, three equations were selected and the coefficients in those equations were determined by using the inverse analysis and optimization process. In the optimization process, the measured and calculated loads were compared and the difference between them was minimized as objective functions. Consequently, the flow stress equation was chosen and the coefficients were determined. Reasonably good agreements of measured and calculated results were obtained with the equation which can be taken into account not only the softening but also the saturation of the flow stress due to the dynamic recrystallization.
PL
Model naprężenia dla stopu magnezu AZ80 o wielkość ziarna około 30 μm opracowano na podstawie interpretacji: danych doświadczalnych za pomocą rozwiązania odwrotnego. Próby ściskania próbek osiowosymetrycznych przeprowadzone w temperaturach 523, 573 i 623 K z prędkościami odkształcenia 0.01, 0.1 i 1 s'. Uzyskane wyniki posłużyły do opracowania modelu. Przy budowie modelu wybrano trzy równania i współczynniki w tych równaniach wyznaczono za pomocą rozwiązania odwrotnego. W procedurze optymalizacyjnej porównywane zmierzone i obliczone siły a różnica między nimi była minimalizowana jako funkcja celu. W konsekwencji wybrano równanie najlepiej opisujące zachowanie się materiału i wyznaczono współczynniki w tym równaniu. Równanie to uwzględnia zarówno umocnienie materiału jak i mięknięcie w wyniku dynamicznej rekrystalizacji oraz stan ustalony przy większych odkształceniach. Uzyskano dobrą zgodność między obliczonymi i zmierzonymi siłami w próbie ściskania.
Wydawca

Rocznik
Strony
123--130
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Research Fellow of Japan Society for the Promotion of Science, PhD student, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan , uel45460@frontier.hokudai.ac.jp
autor
  • Institute for Ferrous Metallurgy, Gliwice, Poland
autor
Bibliografia
  • Ambat, R., Aung, N.N., Zhou, W., 2000, Evaluation of micro-structural effects on corrosion behaviour of AZ91D magnesium alloy, Corrosion Science, 42, 1433-1455.
  • Bhattacharya, R., Wynne, B.P., 2012, Scripta Materialia, Flow softening behavior during dynamic recrystallization in Mg-3Al-lZn magnesium alloy, 67, 277-280.
  • Davenport, S.B., Silk, N.J., Sparks, C.N., Sellars, CM., 1999, Development of constitutive equations for the modelling of hot rolling, Materials Science and Technology, 16, 1-8.
  • Gavrus A., Massoni E., Chenot J.L., 1996, An inverse analysis using a finite element model for identification of Theological parameters, Journal of Materials Processing Technology, 60, 447-454.
  • Gontarz, A., Dziubinska, A., Okon, L., 2011, Determination of Friction Coefficients at Elevated Temperatures for Some Al, Mg and Ti Alloys, Archives of Metallurgy and Materials, 56, 379-384.
  • Gray, J.E., Luan, B., 2002, Protective coatings on magnesium and its alloys - a critical review, Journal of Alloys and Compounds, 336, 88-113.
  • Kang, S.H., Lee, Y.S., Lee, J.H., 2007, Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics, Journal of Materials Processing Technology, 201, 436-440.
  • Kobayashi, S., Oh, S.I., Altan, T., 1989, Metal forming and the finite element method, Oxford University Press, New York, Oxford.
  • Kowalski, B., Sellars, CM., Pietrzyk, M, 2000, Development of a computer code for the interpretation of results of hot plane strain compression tests, ISIJ International, 40, 1230-1236.
  • Mehtedi, M. EL, Musharavati, F., Spigarelli, S., 2014, Materials & Design, Modelling of the flow behaviour of wrought aluminium alloys at elevated temperatures by a new constitutive equation, 54, 869-873.
  • Pietrzyk, M., 2000, Finite element simulation of large plastic deformation, Journal of Materials Processing Technology, 106, 223-229.
  • Qua, G.Z., Shia, Y., Wang, Y.X., Kang, B.S., Ku, T.W., Song, W.J., 2011, Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stress-strain data, Materials Science and Engineering, A528, 8051-8059.
  • Quan, G.Z., Shi, Y, Yu, C.T., Zhou, J., 2013, The Improved Arrhenius Model with Variable Parameters of Flow Behavior Characterizing for The As-Cast AZ80 Magnesium Alloy, Materials Research, 16, 785-791.
  • Sellars, CM., 1979, Physical metallurgy of hot working, in: Hot working and forming processes, (eds), Sellars, CM., Davies, G.J., The Metals Soc, London, 3-15.
  • Szeliga, D., Gawad, J., Pietrzyk, M., 2006, Inverse analysis for identification of rheological and friction models in metal forming, Computer Methods in Applied Mechanics and Engineering, 195, 6778-6798.
  • Tang, B., Yuan, Z., Cheng, G., Huang, L., Zheng, W., Xie, H., 2013, Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state, Materials Science and Engineering A, 585, 304-318.
  • Tokunaga, T., Matsuura, K., Ohno, M., 2012, Aluminum Coating on Magnesium-Based Alloy by Hot Extrusion and Its Characteristics, Materials Transactions, 53, 1034-1041.
  • Zheng, Q.G., Ying, T., Jie, Z., 2010, Dynamic softening behaviour of AZ80 magnesium alloy during upsetting at different temperatures and strain rates, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224, 1707-1716.
  • Zhou, H.T., Li, Q.B., Zhao, Z.K., Liu, Z.C, Wen, S.F., Wang, Q.D., 2010, Hot workability characteristics of magnesium alloy AZ80—A study using processing map, Materials Science and Engineering A, 527, 2022-2026.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-57255d2d-0b7e-4fec-8093-e194bf6bc711
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.