Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 31, nr 1 | 103--113
Tytuł artykułu

Comparison of voltage transformer measuring systems at 110 kV and 10 kV

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comparison of measurements of voltage transformer (VT) voltage ratio and phase displacement was performed between the National Center for High Voltage Measurement (NCHVM), China and the National Measurement Institute (NMI), Australia, with two voltage transformers provided by the NCHVM being used as the travelling standards. Voltage ratios of the 10 kV/100 V transformer measured by the two institutes differed by less than 5 μV/V and the phase displacement by less than 6 μrad, while voltage ratios of the (110/√3 kV)/100 V transformer differed by less than 16 μV/V and 13 μrad. These results confirmed that measurement results of the two institutes agreed within detailed measurement uncertainties evaluation. The comparison further enhances the confidence in both methods, which are widely used for calibration of voltage transformers in the electricity industry.
Wydawca

Rocznik
Strony
103--113
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr., wzory
Twórcy
autor
  • China Electric Power Research Institute, Wuhan, China
autor
  • National Measurement Institute, Lindfield, NSW, Australia
autor
autor
  • National Measurement Institute, Lindfield, NSW, Australia
autor
  • China Electric Power Research Institute, Wuhan, China
Bibliografia
  • [1] Jung, J. K., So, E., Lee, S. H., & Bennett, D. (2011). Comparison of systems between KRISS and NRC to evaluate the performance characteristics of a 400-kV capacitive voltage divider. IEEE Transactions on Instrumentation and Measurement, 60(2), 2634-2641. https://doi.org/10.1109/CPEM.2010.5543410
  • [2] So, E., & Latzel, H. G. (2001). NRC-PTB intercomparison of voltage transformer calibration systems for high voltage at 60 Hz, 50 Hz, and 16.66 Hz. IEEE Transactions on Instrumentation and Measurement, 50(2), 419-421. https://doi.org/10.1109/19.918156
  • [3] Long, Z., Li, W., Fan, J., & Liu, S. (2020, September). International comparison of low impulse voltage between China and Germany. In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE) (pp. 1-4). IEEE. https://doi.org/10.1109/ICHVE49031.2020.9279633
  • [4] Feng, Z., Chunyang, J., Min, L., Fuchang, L., & Shihai, Y. (2019). Development of ultrahigh-voltage standard voltage transformer based on series voltage transformer structure. IET Science, Measurement & Technology, 13(1), 103-107. https://doi.org/10.1049/iet-smt.2018.5258
  • [5] Zhou, F., Mohns, E., Jiang, C., He, X., & Yue, C. (2014, August). 1000V Self-calibrating Inductive Voltage Divider with coaxial-cable winding. In 29th Conference on Precision Electromagnetic Measurements (CPEM 2014) (pp. 128-129). IEEE. https://doi.org/10.1109/CPEM.2014.6898292
  • [6] Liu, H., Chen, L., Wang, X., Yao, T., & Gu, X. (2022). An improved algorithm for the series step-up method based on a linear three-ports network. Metrology and Measurement Systems, 29(2), 301-313, 2022. https://doi.org/10.24425/mms.2022.140035
  • [7] Nabielec, J., & Wetula A. (2016). a voltage divider with autocalibration - a version with single compensation. Przegląd Elektrotechniczny, 92(11), 11-14. https://doi.org/10.15199/48.2016.11.03
  • [8] Mohns, E., Chunyang, J., Badura, H., & Raether, P. (2018). a fundamental step-up method for standard voltage transformers based on an active capacitive high-voltage divider. IEEE Transactions on Instrumentation and Measurement, 68(6), 2121-2128. https://doi.org/10.1109/TIM.2018.2880055
  • [9] Zhao, S., Huang, Q., & Lei, M. (2018). Compact system for onsite calibration of 1000 kV voltage transformers. IET Science, Measurement & Technology, 12(2), 368-374. https://doi.org/10.1049/iet-smt.2017.0372
  • [10] Liu, H., Zhou, F., Chen, L., Lei, M., Yin, X., Jiang, C., & Liu, J. (2021). The Development of Precision 500/√3 kV Two-Stage Voltage Transformer With High-Voltage Excitation. IEEE Transactions on Instrumentation and Measurement, 70, 1-7. https://doi.org/10.1109/TIM.2021.3053979
  • [11] Liu, H., Mohns, E., Meisner, J., Jiang, C., Zhou, F., Yin, X., & Chen, L. (2023). Precision Two-Stage Voltage Transformer for a Wide Voltage Range of 5 kV to 40 kV. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2023.3296126
  • [12] Zhou, F., Jiang, C., Lei, M., & Lin, F. (2019). Improved step-up method to determine the errors of voltage instrument transformer with high accuracy. IEEE Transactions on Instrumentation and Measurement, 69(4), 1308-1312. https://doi.org/10.1109/TIM.2019.2909939
  • [13] Yin, X., Liu, H., Lan, L., Zhou, F., Lei, M., & Jiang, C. (2019). Precision 500/√3 kV three-stage VT with double excitation. IET Science, Measurement & Technology, 13(5), 1239-1244. https://doi.org/10.1049/iet-smt.2018.5449
  • [14] Clothier, W. K., & Medina, L. (1957). The absolute calibration of voltage transformers. Proceedings of the IEE-Part A: Power Engineering, 104(15), 204-211. https://doi.org/10.1049/pi-a.1957.0049
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-56996f6f-18a2-4d08-98a6-ea389e731324
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.