Warianty tytułu
Języki publikacji
Abstrakty
The performance of long-wave infrared (LWIR) x = 0.22 HgCdTe avalanche photodiodes (APDs) was presented. The dark currentvoltage characteristics at temperatures 200 K, 230 K, and 300 K were measured and numerically simulated. Theoretical modeling was performed by the numerical Apsys platform (Crosslight). The effects of the tunneling currents and impact ionization in HgCdTe APDs were calculated. Dark currents exhibit peculiar features which were observed experimentally. The proper agreement between the theoretical and experimental characteristics allowed the determination that the material parameters of the absorber were reached. The effect of the multiplication layer profile on the detector characteristics was observed but was found to be insignificant.
Rocznik
Tom
Strony
art. no. e149173
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland, tetjana.manyk@wat.edu.pl
autor
- Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
- Vigo Photonics S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
autor
- Vigo Photonics S.A., ul. Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys., vol. 68, no. 10, pp. 2267–2336, Oct. 2005, doi: 10.1088/0034-4885/68/10/R01.
- [2] M.A. Kinch, Fundamentals of infrared detector materials. in Tutorial texts series, no. v. TT76. Bellingham, Wash: SPIE Press, 2007.
- [3] W. Hu et al., “128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk,” Opt. Lett., vol. 39, no. 17, p. 5184, Sep. 2014, doi: 10.1364/OL.39.005184.
- [4] K. Jóźwikowski, M. Kopytko, A. Rogalski, and A. Jóźwikowska, “Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared n-on-p HgCdTe photodiodes,” J. Appl. Phys., vol. 108, no. 7, p. 074519, Oct. 2010, doi: 10.1063/1.3483926.
- [5] W. Gawron, J. Sobieski, T. Manyk, M. Kopytko, P. Madejczyk, and J. Rutkowski, “MOCVD Grown HgCdTe Heterostructures for Medium Wave Infrared Detectors,” Coatings, vol. 11, no. 5, p. 611, May 2021, doi: 10.3390/coatings11050611.
- [6] A. Rogalski, Infrared and Terahertz Detectors, Third Edition. CRC Press, 2019. doi: 10.1201/b21951.
- [7] X. Li et al., “Controlling of Avalanche Dark Carriers in Realizing Hot Single Photon Detector,” IEEE Electron Device Lett., vol. 43, no. 6, pp. 922–925, Jun. 2022, doi: 10.1109/LED.2022.3167765.
- [8] A.K. Storebø, T. Brudevoll, E. Selvig, R.W. Hansen, T. Lorentzen, and R. Haakenaasen, “Effect of the Series Resistance on the Current Response of a HgCdTe Avalanche Photodiode Under High-intensity Nanosecond Irradiation,” J. Electron. Mater., vol. 51, no. 7, pp. 4029–4039, Jul. 2022, doi: 10.1007/s11664-022-09670-z.
- [9] J. Rothman et al., “HgCdTe APDs detector developments for high speed, low photon number and large dynamic range photo-detection,” in International Conference on Space Optics – ICSO 2020, Z. Sodnik, B. Cugny, and N. Karafolas, Eds., Online Only, France: SPIE, Jun. 2021, p. 15. doi: 10.1117/12.2599159.
- [10] L. Yang et al., “Modeling and characteristics of MWIR HgCdTe APD at different post-annealing processes,” Infrared Phys. Technol., vol. 127, p. 104413, Dec. 2022, doi: 10.1016/j.infrared.2022.104413.
- [11] H. Guo et al., “Developments and characterization of HgCdTe e-APDs at SITP,” in Earth and Space: From Infrared to Terahertz (ESIT 2022), J. Chu, Ed., Nantong, China: SPIE, Jan. 2023, p. 72. doi: 10.1117/12.2665280.
- [12] X. Han et al., “Dark current and noise analysis for Long-wavelength infrared HgCdTe avalanche photodiodes,” Infrared Phys. Technol., vol. 123, p. 104108, Jun. 2022, doi: 10.1016/j.infrared.2022.104108.
- [13] J. Rothman, L. Mollard, S. Gout, L. Bonnefond, and J. Wlassow “History-Dependent Impact Ionization Theory Applied to HgCdTe e-APDs,” J. Electron. Mater., vol. 40, no. 8, pp. 1757–1768, 2011, doi: 10.1007/s11664-011-1679-9.
- [14] R. Xie et al., “Spatial description theory of narrow-band single-carrier avalanche photodetectors,” Opt. Express, vol. 29, no. 11 pp. 16432–16446, 2021, doi: 10.1364/OE.418110.
- [15] S. Selberherr, Analysis and simulation of semiconductor devices. Wien, Austria; New York: Springer-Verlag, 1984.
- [16] A.G. Chynoweth, “Ionization Rates for Electrons and Holes in Silicon,” Phys. Rev., vol. 109, no. 5, pp. 1537–1540, Mar. 1958, doi: 10.1103/PhysRev.109.1537.
- [17] J.D. Beck, C.-F. Wan, M.A. Kinch, and J.E. Robinson, “MWIR HgCdTe avalanche photodiodes,” International Symposium on Optical Science and Technology, R.E. Longshore, Ed., USA, Nov. 2001, p. 188, doi: 10.1117/12.448174.
- [18] M.B. Reine et al., “HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays,” SPIE Optics + Photonics, R.E. Longshore and A. Sood, Eds., USA, Aug. 2006, p. 629403, doi: 10.1117/12.692872.
- [19] A. Singh, V. Srivastav, and R. Pal, “HgCdTe avalanche photodiodes: A review,” Opt. Laser Technol., vol. 43, no. 7, pp. 1358–1370, Oct. 2011, doi: 10.1016/j.optlastec.2011.03.009.
- [20] Y. Cheng, L. Chen, H. Guo, C. Lin, and L. He, “Improved local field model for HgCdTe electron avalanche photodiode,” Infrared Phys. Technol., vol. 101, pp. 156–161, Sep. 2019, doi: 10.1016/j.infrared.2019.07.002.
- [21] M. Kopytko, J. Sobieski, R. Xie, K. Jóźwikowski, and P. Martyniuk, “Impact ionization in HgCdTe avalanche photodiode optimized to 8 μm cut-off wavelength at 230 K,” Infrared Phys. Technol., vol. 115, p. 103704, Jun. 2021, doi: 10.1016/j.infrared.2021.103704.
- [22] J. Beck et al., “The HgCdTe electron avalanche photodiode,” J. Electron. Mater., vol. 35, no. 6, pp. 1166–1173, Jun. 2006, doi: 10.1007/s11664-006-0237-3.
- [23] M.A. Kinch, J.D. Beck, C.-F. Wan, F. Ma, and J. Campbell, “HgCdTe electron avalanche photodiodes,” J. Electron. Mater., vol. 33, no. 6, pp. 630–639, Jun. 2004, doi: 10.1007/s11664-004-0058-1.
- [24] A. Singh, A.K. Shukla, and R. Pal, “HgCdTe e-avalanche photodiode detector arrays,” AIP Adv., vol. 5, no. 8, p. 087172, Aug. 2015, doi: 10.1063/1.4929773.
- [25] J. He et al., “Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode,” Opt. Express, vol. 28, no. 22, p. 33556, Oct. 2020, doi: 10.1364/OE.408526.
- [26] X. Wang et al., “Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes,” J. Appl. Phys., vol. 115, no. 1, p. 013103, Jan. 2014, doi: 10.1063/1.4861148.
- [27] T. Manyk, K. Majkowycz, J. Rutkowski, and P. Martyniuk, “Theoretical study of back-to-back avalanche photodiodes for dual-band infrared applications,” Opto-Electron. Rev., vol. 31, no. 2, p. e145093, Aug. 2023, doi: 10.24425/opelre.2023.145093.
- [28] T.J. de Lyon et al., “MBE growth of HgCdTe avalanche photodiode structures for low-noise 1.55 μm photodetection,” J. Cryst. Growth, vol. 201–202, pp. 980–984, May 1999, doi: 10.1016/S0022-0248(98)01506-1.
- [29] D. Chen et al., “Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications,” Nat. Photon., vol. 17, no. 7, pp. 594–600, Jul. 2023, doi: 10.1038/s41566-023-01208-x.
- [30] Crossligth Software Inc. Crosslight Device Simulation Software – General Manual 2019 version. 2019, p. 1369. [Online] Available: https://crosslight.com/
- [31] J. Chen et al., “High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared,” Quantum Mater., vol. 6, no. 1, p. 103, Dec. 2021, doi: 10.1038/s41535-021-00409-3.
- [32] G. Leveque, M. Nasser, D. Bertho, B. Orsal, and R. Alabedra, “Ionization energies in Cd𝑥 Hg1−𝑥 Te avalanche photodiodes,” Semicond. Sci. Technol., vol. 8, no. 7, pp. 1317–1323, Jul. 1993, doi: 10.1088/0268-1242/8/7/021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-56767e1d-17e7-4f6c-b137-f465da2ca685