Czasopismo
2017
|
Vol. 42, No. 3
|
204--217
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a project and implementation of the parallel RANSAC algorithm in CUDA architecture for point cloud registration are presented. At the beginning, a serial state of the art method with several heuristic improvements from the literature compared to basic RANSAC is introduced. Subsequently, its algorithmic parallelization and CUDA implementation details are discussed. The comparative test has proven a significant program execution acceleration. The result is finding of the local coordinate system of the object in the scene in the near real-time conditions. The source code is shared on the Internet as a part of the Heuros system.
Słowa kluczowe
Rocznik
Tom
Strony
204--217
Opis fizyczny
Bibliogr. 17 poz., fig., tab.
Twórcy
autor
- Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland, d.koguciuk@mchtr.pw.edu.pl
Bibliografia
- [1] Alehdaghi M., Esfahani M.A., and Harati A. Parallel RANSAC: Speeding up plane extraction in RGBD image sequences using gpu. In Computer and Knowledge Engineering (ICCKE), 2015 5th International Conference on, pages 295-300, Oct 2015.
- [2] Blelloch G.E. Vector Models for Data-parallel Computing. MIT Press, Cambridge, MA, USA, 1990.
- [3] Buch A., Kraft D., Kamarainen J.-K., Petersen H., and Kruger N. Pose estimation using local structure-specific shape and appearance context. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 2080-2087, May 2013.
- [4] Chum O. and Matas J. Randomized RANSAC with t d,d test. In IMAGE AND VISION COMPUTING, pages 448-457, 2002.
- [5] Chum O., Matas J., and Kittler J. Locally optimized RANSAC. In Michaelis B. and Krell G., editors, Pattern Recognition, volume 2781 of Lecture Notes in Computer Science, pages 236-243. Springer Berlin Heidelberg, 2003.
- [6] Fischler M.A. and Bolles R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395, June 1981.
- [7] Hansch R., Weber T., and Hellwich O. Comparison of 3D interest point detectors and descriptors for point cloud fusion. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, pages 57-64, Aug. 2014.
- [8] Hartley R. and Zisserman A. Multiple view geometry in computer vision. Cambridge University Press, Cambridge, 2003. Choix de documents en appendice.
- [9] Heuros 3D object recognition system. https://bitbucket.org/rrgwut/heuros. Accessed: 04-05-2015.
- [10] Izadi S., Kim D., Hilliges O., Molyneaux D., Newcombe R., Kohli P., Shotton J., Hodges S., Freeman D., Davison A., and Fitzgibbon A. Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th annual ACM symposium on User interface software and technology, UIST ’11, pages 559-568, New York, NY, USA, 2011. ACM.
- [11] Koguciuk D. and Harasymowicz-Boggio B. Wykorzystanie obszarów nieznanych w dopasowywaniu chmur punktów. Prace Naukowe Politechniki Warszawskiej. Elektronika, pages 267-276, 2014.
- [12] Mian A., Bennamoun M., and Owens R. Three-dimensional model-based object recognition and segmentation in cluttered scenes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(10):1584-1601, Oct 2006.
- [13] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2015. Version 7.0.
- [14] Raguram R., Frahm J.-M., and Pollefeys M. A comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus. In Forsyth D., Torr P., and Zisserman A., editors, Computer Vision - ECCV 2008, volume 5303 of Lecture Notes in Computer Science, pages 500-513. Springer Berlin Heidelberg, 2008.
- [15] Rusu R., Blodow N., and Beetz M. Fast point feature histograms (fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on, pages 3212-3217, May 2009.
- [16] Rusu R.B. and Cousins S. 3d is here: Point cloud library (pcl). In International Conference on Robotics and Automation, Shanghai, China, 2011 2011.
- [17] Sengupta S., Harris M., Zhang Y., and Owens J. D. Scan primitives for gpu computing. In Graphics Hardware 2007, pages 97-106. ACM, Aug. 2007.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-55d72ae5-47ff-4f7e-88fb-19a0ad7a89ab