Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 9 | 292--302
Tytuł artykułu

Use of Microalgae Using Earthworm Leachate (Lumbricidae) for Application in Agriculture

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microalgae have unique properties that allow them to thrive in unconventional spaces, making them suitable for areas that are not normally suitable for crop growth. This is due to their ability to multiply rapidly, grow easily and adapt to different environments at low cost. As a result, the present study aims to analyze the potential of microalgae as a source of agricultural nutrition, as well as the health benefits they can provide. The following research was conducted on an experimental scale using a closed system (photobioreactor) for the cultivation of microalgae, its physicochemical characterization of the cultures and dry biomass. It can be observed the percentages of 11 N; 1.4 P; 0.3 K and its micronutrients are essential for plant growth, since microalgae-based biofertilizers are considered as a sustainable, cost-effective and environmentally friendly alternative to chemical fertilizers. The use of microalgae biomass as a biofertilizer in agriculture can increase fertility, reduce soil erosion and nutrient loss, and improve soil quality over time. It also benefits plants, vegetables and greens, as it contains nitrogen, phosphorus and potassium, which are necessary for growth.
Słowa kluczowe
Wydawca

Rocznik
Strony
292--302
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Chemical, Food and Biotechnological Processes, Universidad Técnica de Manabí. 130105, Portoviejo, Ecuador, jramirez5253@utm.edu.ec
  • Department of Chemical, Food and Biotechnological Processes, Universidad Técnica de Manabí. 130105, Portoviejo, Ecuador, ramon.cevallos@utm.edu.ec
  • Department of Chemistry, School of Basic Sciences, Universidad Técnica de Manabí. 130105, Portoviejo, Ecuador, sonia.giler@utm.edu.ec
  • Department of Chemical, Food and Biotechnological Processes, Universidad Técnica de Manabí. 130105, Portoviejo, Ecuador, wendy.menddoza@utm.edu.ec
Bibliografia
  • 1. Abdel-Raouf, N., Al-Homaidan, A.A., Ibraheem, I.B.M. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3). https://doi.org/10.1016/j.sjbs.2012.04.005
  • 2. Gonzales, A. 2016. Cultivo de Microalgas a Gran Escala: Sistema de Producción. Cajamar. CAJAMAR. https://www.cajamar.es/storage/documents/018microalgas2-1467367279-9023d.pdf
  • 3. AOAC. 2005. Official methods of analysis of the Association of Analytical Chemist. Virginia USA : Association of Official Analytical Chemist, Inc, 4–5.
  • 4. Awale, R.M.S. 2017. Advances in Dryland Farming in the Inland Pacific Northwest. Washington State University, 47–98.
  • 5. Battacharyya, D., Babgohari, M.Z., Rathor, P., Prithiviraj, B. 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196. https://doi.org/10.1016/j.scienta.2015.09.012
  • 6. Beltrán-Rocha, J.C., Guajardo-Barbosa, C., BarcelóQuinta, I.D., López-Chuken, U.J. 2017. Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2 . Revista de biología marina y oceanografía, 52(3), 417–427. https://doi.org/10.4067/S0718-19572017000300001
  • 7. Benavente-Valdés, R., Montanez, J.C., Aguilar, C.N., Zavala, A.M. 2014. Transgenic genes in soybean food View project Development of bioprocess to valorize agroindustrial by-products and obtaind compounds with high value added View project. https://www.researchgate.net/publication/262560081
  • 8. Bermeo, J.L. 2009. Caracterización de los lixiviados generados en el proceso de compostaje provenientes de residuos orgánicos de plaza de mercado y su uso como complemento nutricional para cultivos hidropónicos. Ingeniería Ambiental y Sanitaria. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/685
  • 9. Bert, A., Felle, H., Bentrup, F.W. 1984. Amine Transport in Riccia fluitans Cytoplasmic and Vacuolar pH Recorded by a pH-Sensitive Microelectrode. Plant Physiology, 76(1), 75–78. https://doi.org/10.1104/PP.76.1.75
  • 10. Bray, R.H., Kurtz, L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1). https://doi.org/10.1097/00010694-194501000-00006
  • 11. Orlando, C.L.M. 2014. Efecto de la Aplicación de Diferentes Concentraciones de Lixiviado de Humus de Lombriz y Dos Formas de Aplicación en el Cultivo de Espinaca (Spinacea Oleracea L), Bajo Ambiente Protegido. Universidad Mayor de San Andrés. La Paz—Bolivia. https://repositorio.umsa.bo/bitstream/handle/123456789/5264/T-1925.pdf?sequence=1&isAllowed=y
  • 12. Cerón Hernández, C., Alfonso, V., Parra, M., Arturo, C., Varón, P. 2015. Uso de lagunas algales de alta tasa para tratamiento de aguas residuales. https://doi.org/10.14482/inde.33.1.5318
  • 13. Crouch, I.J., van Staden, J. 1993. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regulation, 13(1). https://doi.org/10.1007/BF00207588
  • 14. Das, P., Khan, S., Chaudhary, A.K., AbdulQuadir, M., Thaher, M.I., Al-Jabri, H. 2019. Potential applications of algae-based bio-fertilizer. https://doi.org/10.1007/978-3-030-18933-4_3
  • 15. Farag, I., Mulumba, N., Farag, I.H. 2012. Tubular photobioreactor for microalgae biodiesel production. En Article in International Journal of Engineering Science and Technology. https://www.researchgate.net/publication/259866896
  • 16. Oscanoa H.A., Blásquez, C.T.G, Gheraldine Y.H., Leenin F.R., Samanamud, C. 2018. Instituto del Mar del Perú (Imarpe). www.imarpe.gob.pe
  • 17. García G.A. 2015. Las lombrices y la agricultura. Agro Cabildo. (Oficina Extensión Agraria y Desarrollo Rural—La Orotava. https://www.agrocabildo.org/publica/Publicaciones/agec_562_lombrices%20y%20la%20agricultura2.pdf
  • 18. García M.L. 2008. Eliminación de CO2 con microalagas autóctonas. (Tesis Doctoral). Universidad de León. España. https://buleria.unileon.es/bitstream/handle/10612/1414/2008ONMART%25CDNEZ%20GARC%25CDA%2C%20LORENA.pdf?sequence=1
  • 19. Garibay-Hernández, A., Vazquez-Duhalt, R., Del Pilar Sánchez-Saavedra, M. 2009. Biodiesel a partir de microalgas. https://www.researchgate.net/publication/268207621
  • 20. Gomez, Z. 1987. Métodos oficiales de análisis físico-químicos para aguas potables de consumo público. El Decreto de la Presidencia de Gobierno número 2484/1967.
  • 21. Gonzalo, S., Paul, M., Yelitza, G.-O., Ana, S.G., Edgar, T.G., Borges Juan, B., Rodríguez Duilio, T. 2020. Propuesta de un protocolo para la obtención de fertilizante orgánico a partir de microalgas. Agroindustria, Sociedad Y Ambiente, 1(14), 92–109. https://revistas.uclave.org/index.php/asa/article/view/2834/1771
  • 22. Grima, E.M., Fernández Sevilla, J.M., Acién Fernández, F.G. 2010. Microalgae, mass culture methods. En Encyclopedia of Industrial Biotechnology. https://doi.org/10.1002/9780470054581.eib418
  • 23. Grzesik, M., Romanowska-Duda, Z. 2015. Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Polish Journal of Environmental Studies, 24(3). https://doi.org/10.15244/pjoes/34667
  • 24. Ho, S.H., Chen, C.Y., Lee, D.J., Chang, J.S. 2011. Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnology Advances, 29(2). https://doi.org/10.1016/j.biotechadv.2010.11.001
  • 25. Holajjer, P., Kamra, A., Gaur, H.S., Manjunath, M. 2013. Potential of cyanobacteria for biorational management of plant parasitic nematodes: A review. Crop Protection, 53, 147–151. https://doi.org/10.1016/J.CROPRO.2013.07.005
  • 26. Ibraheem, I. 2007. Cyanobacteria as Alternative Biological Conditioners for Bioremediation of Barren Soil. Egyptian Journal of Phycology, 8(1), 99–117. https://doi.org/10.21608/EGYJS.2007.114548
  • 27. Jaramillo A.J.T. and Muñoz N.M.R. 2018. Diseño, Construcción y Automatización de un Extractor de Llixiviados a partir de Humus de Lombriz Californiana (Eiseniafoetida). Escuela Superior Politecnica de Chimborazo. Riobamba—Ecuador. http://dspace.espoch.edu.ec/bitstream/123456789/8790/1/17T1553.pdf
  • 28. Karthikeyan, N., Prasanna, R., Nain, L., Kaushik, B.D. 2007. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43(1), 23–30. https://doi.org/10.1016/J.EJSOBI.2006.11.001
  • 29. Khanzada, Z.T. 2020. Phosphorus removal from landfill leachate by microalgae. Biotechnology Reports, 25. https://doi.org/10.1016/j.btre.2020.e00419
  • 30. Kumar, D., Purakayastha, T.J., Shivay, Y.S. 2015. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management, 6(2), 176–181. https://doi.org/10.5958/0976-4038.2015.00030.5
  • 31. Lau, P.S., Tam, N.F.Y., Wong, Y.S. 1995. Effect of algal density on nutrient removal from primary settled wastewater. Environmental Pollution, 89(1), 59–66. https://doi.org/10.1016/0269-7491(94)00044-E
  • 32. Lavu, R.V.S., De Schepper, V., Steppe, K., Majeti, P.N.V., Tack, F., Du Laing, G. 2013. Use of selenium fertilizers for production of Se-enriched Kenaf (Hibiscus cannabinus): Effect on Se concentration and plant productivity. Journal of Plant Nutrition and Soil Science, 176(4), 634–639. https://doi.org/10.1002/JPLN.201200339
  • 33. Li, Q., Du, W., Liu, D. 2008. Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5). https://doi. org/10.1007/s00253-008-1625-9
  • 34. Lópes Peña, M. de las N. 2019. Determinación de fosfato mediante analálisis por inyección de flujo. Universidad Politecnica. Madrid—España. Universidad Politecnica. https://oa.upm.es/56704/1/TFG_MARIA_DE_LAS_NIEVES_LOPEZ_PENA.pdf
  • 35. López S.J. 2022. Aplicación de microalgas como biofertilizantes en cultivos de Albahaca. Universitat Politécnica de Catulunya Barcelonatech—España. https://upcommons.upc.edu/bitstream/handle/2117/376504/memoria. pdf?sequence=1&isAllowed=y
  • 36. Metting, B., Rayburn, W.R. 1983. The influence of a microalgal conditioner on selected washington soils: an empirical study. Soil Science Society of America Journal, 47(4), 682–685. https://doi.org/10.2136/SSSAJ1983.03615995004700040015X
  • 37. Mfundo P.M. 2012. Inoculation effects of two South African cyanobacteria strains on aggregate stability of a silt loam soil. African Journal Of Biotechnology, 4(47). https://doi.org/10.5897/ajb11.2111
  • 38. Mohamed, Z.A. 2008. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology, 17(6). https://doi.org/10.1007/s10646-008-0204-2
  • 39. Morocho P.J.P. and Gordillo O.S.K. 2023. Evaluación de la Remoción de Nitratos y Fosfatos con Microalga, Especie Chlorella Vulgaris en Agua Residual Procedente del Río Machángara del Sector Chimbacalle, Cantón Quito, Provincia Pichincha 2022-2023. Universidad Politécnica Salesiana. https://dspace.ups.edu.ec/bitstream/123456789/24421/1/TTS1196.pdf
  • 40. Odjadjare, E.C., Mutanda, T., Olaniran, A.O. 2017. Potential biotechnological application of microalgae: A critical review. Critical reviews in biotechnology, 37(1), 37–52. https://doi.org/10.3109/07388551.2015.1108956
  • 41. Ortiz-Moreno, M.L., Karen, Sandoval-Parra, X., Laura, Solarte-Murillo, V. 2019. Chlorella, ¿un potencial biofertilizante? Orinoquia, 23(2), 71–78. https://doi.org/10.22579/20112629.582
  • 42. Osman, M.E.H., El-Sheekh, M.M., El-Naggar, A.H., Gheda, S.F. 2010. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils, 46(8), 861–875. https://doi.org/10.1007/S00374-010-0491-7/METRICS
  • 43. Park, J.B.K., Craggs, R.J., Shilton, A.N. 2011. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1). https://doi.org/10.1016/j.biortech.2010.06.158
  • 44. Paskuliakova, A., McGowan, T., Tonry, S., Touzet, N. 2018. Microalgal bioremediation of nitrogenous compounds in landfill leachate – The importance of micronutrient balance in the treatment of leachates of variable composition. Algal Research, 32. https://doi.org/10.1016/j.algal.2018.03.010
  • 45. Pérez-Madruga, Y., López-Padrón, I., Reyes-Guerrero, Y. 2020. Las algas como alternativa natural para la producción de diferentes cultivos. En Cultivos Tropicales, 41(2), 9. http://ediciones.inca.edu.cu
  • 46. Povero, G., Mejia, J.F., Di Tommaso, D., Piaggesi, A., Warrior, P. 2016. A systematic approach to discover and characterize natural plant biostimulants. Frontiers in Plant Science, 7(APR2016). https://doi.org/10.3389/fpls.2016.00435
  • 47. Prasanna, R., Babu, S., Bidyarani, N., Kumar, A., Triveni, S., Monga, D., Mukherjee, A.K., Kranthi, S., Gokte-Narkhedkar, N., Adak, A., Yadav, K., Nain, L., Saxena, A.K. 2015. Prospecting cyanobacteria-fortif ied composts as plant growth promoting and biocontrol agents in cotton. Experimental Agriculture, 51(1), 42–65. https://doi.org/10.1017/S0014479714000143
  • 48. Rhodes, C.J. 2009. Oil from algae; salvation from peak oil? Science Progress, 92(1), 39–90. https://doi.org/10.3184/003685009X440281
  • 49. Ribeiro O.P.C. 2017. Análisis y prevención de riesgos en el uso de fertilizantes en agricultura. (Master).Universidad de Coruña. España. https://ruc.udc.es/dspace/bitstream/handle/2183/20373/RibeiroOliveira_PaulaCristina_TFM_2017.pdf
  • 50. Richmond, A. 2004. Handbook of microalgal culture: Biotechnology and applied phycology. Blackwell Science. https://doi.org/10.1002/9780470995280
  • 51. Rizwan, M., Mujtaba, G., Memon, S.A., Lee, K., Rashid, N. 2018. Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92. https://doi.org/10.1016/j.rser.2018.04.034
  • 52. Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., Tava, A. 2019. Microalgal biostimulants and biofertilisers in crop productions. 9(4), 192. https://doi.org/10.3390/AGRONOMY9040192
  • 53. Rossi, F., Li, H., Liu, Y., De Philippis, R. 2017. Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Science Reviews, 171, 28–43. https://doi.org/10.1016/J.EARSCIREV.2017.05.006
  • 54. Tüzel, Y., Varol, N., Oztekin, G. B., Ekinci, K., Merken, O. 2017. Effects of composts obtained from olive oil production wastes on organic tomato seedling production. Acta Horticulturae, 1164. https://doi.org/10.17660/ActaHortic.2017.1164.28
  • 55. Ullrich, W.R., Larsson, M., Larsson, C.‐M, Lesch, S., Novacky, A. 1984. Ammonium uptake in Lemna gibba G 1, related membrane potential changes, and inhibition of anion uptake. Physiologia Plantarum, 61(3), 369–376. https://doi.org/10.1111/J.1399-3054.1984.TB06342.X
  • 56. Ullrich, W.R., Lesch, S., Jarczyk, L., Herterich, M., Trogisch, G.D. 1990. Transport of inorganic nitrogen compounds: Physiological studies on uptake and assimilation. Inorganic Nitrogen in Plants and Microorganisms, 44–50. https://doi.org/10.1007/978-3-642-75812-6_6
  • 57. Uysal, O., Uysal, F.O., Ekinci, K. 2015. Evaluation of microalgae as microbial fertilizer. European Journal of Sustainable Development, 4(2). https://doi.org/10.14207/ejsd.2015.v4n2p77
  • 58. Wang, S.K., Hu, Y.R., Wang, F., Stiles, A.R., Liu, C.Z. 2014. Scale-up cultivation of Chlorella ellipsoidea from indoor to outdoor in bubble column bioreactors. Bioresource technology, 156, 117–122. https://doi.org/10.1016/J.BIORTECH.2014.01.023
  • 59. Watanabe, A., Nishigaki, S., Konishi, C. 1951. Effect of nitrogen-fixing blue-green algæ on the growth of rice plants. Nature, 168(4278). https://doi.org/10.1038/168748b0
  • 60. Wuang, S.C., Khin, M.C., Chua, P.Q.D., Luo, Y.D. 2016. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Research, 15, 59–64. https://doi.org/10.1016/J.ALGAL.2016.02.009
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-55c8a6b6-7808-4917-acb1-00c086352ee0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.