Czasopismo
2022
|
Vol. 22, no. 1
|
art. no. e13, 2022
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Up to now, no studies have been yet reported to study the mechanical behaviors of three-dimensional functionally graded graphene platelets reinforced composite (FG-GPLRC) open-type panel. In this paper, the free vibration of FG-GPLRC open-type panel under multi-directional initially stressed using three-dimensional poroelasticity theory is investigated for the first time. Weight fraction of graphene open-type panel is assumed to be distributed either uniformly or functionally graded (FG) along the radial direction. Modified Halpin–Tsai model is used to compute effective Young’s modulus, whereas effective Poisson’s ratio and mass density are computed using the rule of mixture. State-space differential equations are derived from the governing equation of motion and constitutive relations in cylindrical co-ordinates. The accuracy of the obtained formulation is validated by comparing the numerical results with those reported in the available literature as well as with the finite-element modeling. The influences of several importance parameters, such as various directional initial stress, compressibility coefficient, porosity, and various type of sandwich open-type cylindrical panel, are investigated on the frequency of the structures. The results of the present study can be served as benchmarks for future mechanical analysis of cylindrical FG-GPLRC structures.
Czasopismo
Rocznik
Tom
Strony
art. no. e13, 2022
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
- Liaoning Technical University, Fuxin 123000, Liaoning, China, rongzhengliu@126.com
autor
- Liaoning Technical University, Fuxin 123000, Liaoning, China, lihaoran0329@126.com
- Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
- Laboratory of Systems and Applied Mechanics, Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-143, Iran, m_safarpour@modares.ac.ir
Bibliografia
- 1. Moussaoui F, Benamar R. Non-linear vibrations of shell-type structures: a review with bibliography. J Sound Vib. 2002;255:161–84.
- 2. Jeng-Shian C, Wen-Jiann C. Natural frequencies and critical velocities of fixed-fixed laminated circular cylindrical shells conveying fluids. Comput Struct. 1995;57:929–39. https://doi.org/10.1016/0045-7949(94)00352-4.
- 3. Heimbs S, Hoffmann M, Waimer M, Schmeer S, Blaurock J. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations. Int J Crashworthiness. 2013;18:406–22. https://doi.org/10.1080/13588265.2013.801294.
- 4. Bardell N, Dunsdon J, Langley R. Free vibration of thin, isotropic, open, conical panels. J Sound Vib. 1998;217:297–320.
- 5. Bhagat V, Jeyaraj P, Murigendrappa SM. Buckling and free vibration characteristics of a uniformly heated isotropic cylindrical panel. Proc Eng. 2016;144:474–81. https://doi.org/10.1016/j.proeng.2016.05.158.
- 6. Mohammadi F, Sedaghati R. Vibration analysis and design optimization of sandwich cylindrical panels fully and partially treated with electrorheological fluid materials. J Intell Mater Syst Struct. 2012;23:1679–97. https://doi.org/10.1177/1045389X12451195.
- 7. Katariya PV, Panda SK. Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Eng Comput. 2019;35:1009–26. https:// doi. org/ 10. 1007/s00366-018-0646-y.
- 8. Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civ Mech Eng. 2020;20:1–17.
- 9. Arshad SH, Naeem MN, Sultana N, Shah AG, Iqbal Z. Vibration analysis of bi-layered FGM cylindrical shells. Arch Appl Mech.2011;81:319–43. https://doi.org/10.1007/s00419-010-0409-8.
- 10. Shen H-S, Wang H. Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments. Compos B Eng. 2014;60:167–77. https://doi.org/10.1016/j.compositesb.2013.12.051.
- 11. Babaei H, Kiani Y, Eslami MR. Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface. Compos Struct. 2019;220:888–98. https://doi.org/10.1016/j.compstruct.2019.03.064.
- 12. Librescu L, Khdeir A, Frederick D. A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: free vibration and buckling. Acta Mech. 1989;76:1–33.
- 13. Zhang H, Sun F, Fan H, Chen H, Chen L, Fang D. Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder. Compos Sci Technol. 2014;100:26–33. https://doi.org/10.1016/j.compscitech.2014.05.030.
- 14. Kiani Y. Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Compos B Eng. 2019;156:128–37. https:// doi. org/ 10. 1016/j.compositesb.2018.08.052.
- 15. Zhi Rong M, Qiu Zhang M, Liu H, Zeng H, Wetzel B, Friedrich K. Microstructure and tribological behavior of polymeric nanocomposites. Ind Lubr Tribol. 2001;53:72–7. https://doi.org/10.1108/00368790110383993.
- 16. Mehar K, Panda SK. Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polym Compos. 2018;39:2751–64. https://doi.org/10.1002/pc.24266.
- 17. Safaei B, Moradi-Dastjerdi R, Behdinan K, Chu F. Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers. Aerosp Sci Technol. 2019;91:175–85. https://doi.org/10.1016/j.ast.2019.05.020.
- 18. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 2009;3:3884–90. https://doi.org/10.1021/nn9010472.
- 19. Anderson TA. A 3-D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere. Compos Struct. 2003;60:265–74. https://doi.org/10.1016/S0263-8223(03)00013-8.
- 20. Kashtalyan M, Menshykova M. Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Compos Struct. 2009;87:36–43. https://doi.org/10.1016/j.compstruct.2007.12.003.
- 21. Woodward B, Kashtalyan M. 3D elasticity analysis of sandwich panels with graded core under distributed and concentrated loadings. Int J Mech Sci. 2011;53:872–85. https://doi.org/10.1016/j.ijmecsci.2011.07.011.
- 22. Alibeigloo A. Three-dimensional thermo-elasticity solution of sandwich cylindrical panel with functionally graded core. Compos Struct. 2014;107:458–68. https:// doi. org/ 10. 1016/j. compstruct.2013.08.009.
- 23. Yaghi A, Hyde TH, Becker AA, Sun W, Williams JA. Residual stress simulation in thin and thick-walled stainless steel pipe welds including pipe diameter effects. Int J Press Vessels Pip. 2006;83:864–74. https://doi.org/10.1016/j.ijpvp.2006.08.014.
- 24. Arsenault RJ, Taya M. Thermal residual stress in metal matrix composite. Acta Metall. 1987;35:651–9. https://doi.org/10.1016/0001-6160(87)90188-X.
- 25. Kholdi M, Loghman A, Ashrafi H, Arefi M. Analysis of thick-walled spherical shells subjected to external pressure: elastoplastic and residual stress analysis. Proc Inst Mech Eng Part L J Mater Des Appl. 2020;234:186–97. https://doi.org/10.1177/1464420719882958.
- 26. Kumar B, Bag S. Phase transformation effect in distortion and residual stress of thin-sheet laser welded Ti-alloy. Opt Lasers Eng. 2019;122:209–24. https://doi.org/10.1016/j.optlaseng.2019.06.008.
- 27. Luzin V, Spencer K, Zhang M-X. Residual stress and thermomechanical properties of cold spray metal coatings. Acta Mater. 2011;59:1259–70. https://doi.org/10.1016/j.actamat.2010.10.058.
- 28. Fameso F, Desai D. Explicit analysis using time-dependent damping simulation of one-sided laser shock peening on martensitic steel turbine blades. SIMULATION. 2020;96:927–38.
- 29. Liu D, Kitipornchai S, Chen W, Yang J. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. ComposStruct. 2018;189:560–9. https:// doi. org/ 10. 1016/j. compstruct.2018.01.106.
- 30. Thang PT, Thoi TN, Lee J. Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections. Eur J Mech A Solids. 2019;73:483–91. https://doi.org/10.1016/j.euromechsol.2018.10.008.
- 31. Morais JL, Silva FMA. Influence of modal coupling and geometrical imperfections on the nonlinear buckling of cylindrical panels under static axial load. Eng Struct. 2019;183:816–29. https://doi.org/10.1016/j.engstruct.2018.12.032.
- 32. Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct. 2018;193:281–94.
- 33. Gibson I, Ashby MF. The mechanics of three-dimensional cellular materials. Proc R Soc Lond A Math Phys Sci. 1982;382:43–59.
- 34. Ansari R, Torabi J. Semi-analytical postbuckling analysis of polymer nanocomposite cylindrical shells reinforced with functionally graded graphene platelets. Thin-Walled Struct. 2019;144:106248.
- 35. Du J, Jin X, Wang J, Zhou Y. SH wave propagation in a cylindrically layered piezoelectric structure with initial stress. Acta Mech. 2007;191:59–74.
- 36. Jabbari M, Karampour S, Eslami M. Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica. 2013;48:699–719.
- 37. Bagheri H, Kiani Y, Eslami M. Asymmetric thermo-inertial buckling of annular plates. Acta Mech. 2017;228:1493–509.
- 38. Tornabene F, Fantuzzi N, Ubertini F, Viola E. Strong formulation finite element method based on differential quadrature: a survey. Appl Mech Rev. 2015;67(2):020801.
- 39. Liu F, Ming P, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B. 2007;76:064120.
- 40. Zhao X, Lee YY, Liew KM. Thermoelastic and vibration analysis of functionally graded cylindrical shells. Int J Mech Sci. 2009;51:694–707. https://doi.org/10.1016/j.ijmecsci.2009.08.001.
- 41. Mirzaei M, Kiani Y. Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos Struct. 2016;142:45–56. https://doi.org/10.1016/j.compstruct.2015.12.071.
- 42. Olson MD, Lindberg GM. Dynamic analysis of shallow shells with a doubly-curved triangular finite element. J Sound Vib. 1971;19:299–318. https:// doi. org/ 10. 1016/ 0022- 460X(71)90691-2.
- 43. Lim CW, Liew KM. A higher order theory for vibration of shear deformable cylindrical shallow shells. Int J Mech Sci. 1995;37:277–95. https://doi.org/10.1016/0020-7403(95)93521-7.
- 44. Liew KM, Bergman LA, Ng TY, Lam KY. Three-dimensional vibration of cylindrical shell panels—solution by continuum and discrete approaches. Comput Mech. 2000;26:208–21. https://doi.org/10.1007/s004660000168.
- 45. Mirzaei M, Kiani Y. Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos Struct. 2016;142:45–56.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-55c55fc0-f529-4c85-8ccd-3b71c3512fb1