Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes a new model-based optimization approach to improve the clinical efficiency of compensatory insulin bolus treatment in diabetic patients, aiming to mitigate the consequences of diabetes. The most important contribution of this paper is a novel methodology for determining the optimal parameters of insulin treatment, namely the size and timing of insulin boluses, to effectively compensate for carbohydrate intake. This concept can be seen as the so-called optimal model-based bolus calculator. The presented theoretical framework deals with the problem of optimal disturbance rejection in impulsive systems by minimizing an integral quadratic cost function. The methodology considers a personalized empirical transfer function model with static gains and time constants as the only parameters assumed to be known, making the bolus calculator more straightforward to implement in clinical practice. Contrary to other techniques, the proposed methodology considers impulsive insulin administration in the form of boluses, which is more feasible than continuous infusion. In contrast to the conventional bolus calculator, the proposed algorithm allows for maximizing therapy performance by optimizing the relative time of insulin bolus administration with respect to carbohydrate intake. Another feature to highlight is that the solution of the optimization problem can be obtained analytically, hence no numerical iterative solvers are required. Additionally, the continuous-time domain approach allows for a much finer adjustments of the insulin administration timing compared to discrete-time models. The proposed approach was validated in an in-silico study, which demonstrated the importance of systematically determined insulin-carbohydrate ratio and the relative delay between disturbance and its compensation. The results showed that the proposed optimal bolus calculator outperforms the traditional suboptimal formula.
Czasopismo
Rocznik
Tom
Strony
414--430
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
autor
- Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 84104, Bratislava, Slovakia, martin.dodek@stuba.sk
autor
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
autor
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
Bibliografia
- [1] Boughton CK, Hartnell S, Allen JM, Hovorka R. The importance of prandial insulin bolus timing with hybrid closed-loop systems. Diabetic Med 2019;36(12):1716-7.
- [2] Lee ML, Wagner DD, Raghinaru D, Huyett LM, Wright NC, Roy A, Brown SA. Accuracy and efficacy of an insulin bolus calculator incorporating mild-to-moderate hypoglycemia risk assessment. Diabet Technol Therapeut 2021;23(7):464-9.
- [3] Cescon M, Stemmann M, Johansson R. Impulsive Predictive Control of T1DM Glycemia: An In-Silico Study. In: Proceedings of the ASME 2012 5th annual dynamic systems and control conference. 2012, p. 319-26.
- [4] Boiroux D, Aradóttir TB, Nørgaard K, Poulsen NK, Madsen H, Jørgensen JB. An adaptive nonlinear basal-bolus calculator for patients with type 1 diabetes. J Diabet Sci Technol 2017;11(1):29-36.
- [5] Vereshchetin P, Breton M, Patek SD. Mealtime correction insulin advisor for CGM-informed insulin pen therapy. In: 2013 American control conference. 2013, p. 2917-22.
- [6] Utz T, Braun M, Graichen K, Freckmann G. Model of the glucose-insulin system of type-1 diabetics and optimization-based bolus calculation. In: 2014 UKaCC international conference on control. 2014, p. 579-84.
- [7] Kirchsteiger H, Del Re L, Renard E, Mayrhofer M. Robustness properties of optimal insulin bolus administrations for type 1 diabetes. In: 2009 American control conference. 2009, p. 2284-9.
- [8] Kirchsteiger H, Del Re L. Reduced hypoglycemia risk in insulin bolus therapy using asymmetric cost functions. In: 2009 7th Asian control conference. 2009, p. 751-6.
- [9] Al Helal Z, Rehbock V, Loxton R. Insulin injections and exercise scheduling for individuals with diabetes: An optimal control model. Optim Control Appl Methods 2018;39(2):663-81.
- [10] Fakhroleslam M, Bozorgmehry Boozarjomehry R. A multi-objective optimal insulin bolus advisor for type 1 diabetes based on personalized model and daily diet. Asia-Pacific J Chem Eng 2021;16(4).
- [11] Rivadeneira PS, Ferramosca A, González AH. Control strategies for nonzero set-point regulation of linear impulsive systems. IEEE Trans Autom Control 2018;63(9):2994-3001.
- [12] Sopasakis P, Patrinos P, Sarimveis H, Bemporad A. Model predictive control for linear impulsive systems. IEEE Trans Autom Control 2015;60(8):2277-82.
- [13] Abuin P, Rivadeneira P, Ferramosca A, González A. Artificial pancreas under stable pulsatile MPC: Improving the closed-loop performance. J Process Control 2020;92:246-60.
- [14] Villa-Tamayo MF, León-Vargas F, García-Jaramillo M, Rivadeneira PS. Glycemic control strategy based on an impulsive MPC with safety layer coupling for IOB limitation. IEEE Control Syst Lett 2021;5(5):1669-74.
- [15] Humaidi AJ, Yousif KY, Hameed AH, Ibraheem IK. Optimal robust controller design for uncertain linear glucose system. In: 2019 6th International conference on control, decision and information technologies. 2019, p. 663-8.
- [16] Humaidi A, Hasan S, Al-Jodah A. Design of second order sliding mode for glucose regulation systems with disturbance. Int J Eng Technol(UAE) 2018;7(2):243-7.
- [17] Schmidt S, Nørgaard K. Bolus calculators. J Diabetes Sci Technol 2014;8(5):1035-41.
- [18] Mehmood S, Ahmad I, Arif H, Ammara UE, Majeed A. Artificial pancreas control strategies used for type 1 diabetes control and treatment: A comprehensive analysis. Appl Syst Innovat 2020;3(3).
- [19] Tárník M, Bátora V, Jørgensen JB, Boiroux D, Miklovičová E, Ludwig T, et al. Remarks on models for estimating the carbohydrate to insulin ratio and insulin sensitivity in T1DM. In: 2015 European control conference. 2015, p. 31-6.
- [20] Dodek M, Miklovičová E. Physiology-compliant empirical model for glycemia prediction. Int Rev Automatic Control (IREACO) 2021;14(6).
- [21] Kanwal RP. Generalized functions. In: Meyers RA, editor. Encyclopedia of physical science and technology. 3rd ed.. Academic Press; 2003.
- [22] Toffanin C, Del Favero S, Aiello EM, Messori M, Cobelli C, Magni L. MPC model individualization in free-living conditions: A proof-of-concept case study. IFAC Papers Online 2017;50(1):1181-6, 20th World Congress of the International-Federation-of-Automatic-Control (IFAC), Toulouse, FRANCE, JUL 09-14, 2017.
- [23] Toffanin C, Del Favero S, Aiello E, Messori M, Cobelli C, Magni L. Glucose-insulin model identified in free-living conditions for hypoglycaemia prevention. J Process Control 2018;64:27-36.
- [24] Toffanin C, Aiello E, Del Favero S, Cobelli C, Magni L. Multiple models for artificial pancreas predictions identified from free-living condition data: A proof of concept study. J Process Control 2019;77:29-37.
- [25] Toffanin C, Aiello EM, Cobelli C, Magni L. Hypoglycemia prevention via personalized glucose-insulin models identified in free-living conditions. J Diabetes Sci Technol 2019;13(6):1008-16.
- [26] Dodek M, Miklovičová E. Maximizing performance of linear model predictive control of glycemia for T1DM subjects. Arch Contol Sci 2022;32(No 2):305-33.
- [27] Kirchsteiger H, Del Re L. A model based bolus calculator for blood glucose control in type 1 diabetes. In: 2014 American control conference. 2014, p. 5465-70.
- [28] Parker RS, Doyle FJ, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999;46(2):148-57.
- [29] Magni L, Raimondo DM, Bossi L, Man CD, Nicolao GD, Kovatchev B, et al. Model predictive control of type 1 diabetes: An in silico trial. J Diabetes Sci Technol 2007;1(6):804-12.
- [30] Boiroux D, Schmidt S, Duun-Henriksen A, Frøssing L, Nørgaard K, Madsbad S, et al. Control of blood glucose for people with type 1 diabetes: an in vivo study. In: Proceedings of the 17th nordic process control workshop. Technical University of Denmark; 2012, p. 133-40.
- [31] Magni L, Raimondo D, Man CD, De Nicolao G, Kovatchev B, Cobelli C. Model predictive control of glucose concentration in subjects with type 1 diabetes: an in silico trial. IFAC Proc Vol. 2008;41(2):4246-51, 17th IFAC World Congress.
- [32] Kreyszig E. Advanced engineering mathematics. 10th ed. John Wiley & Sons; 2010, p. 1152.
- [33] Oppenheim A, Willsky A, Nawab S. Signals & systems, In: Prentice-hall signal processing series, 2nd ed.. Prentice Hall; 1997.
- [34] Hirsch MW, Smale S, Devaney RL. Differential equations, dynamical systems, and an introduction to chaos. 3rd ed.. Boston: Academic Press; 2013, p. 417.
- [35] Romeres D, Schiavon M, Basu A, Cobelli C, Basu R, Dalla Man C. Exercise effect on insulin-dependent and insulin-independent glucose utilization in healthy individuals and individuals with type 1 diabetes: a modeling study. Am J Physiol-Endocrinol Metabolism 2021;321(1):122-9.
- [36] Visentin R, Dalla Man C, Kudva YC, Basu A, Cobelli C. Circadian variability of insulin sensitivity: Physiological input for in silico artificial pancreas. Diabet Technol Therapeut 2015;17(1):1-7.
- [37] Dodek M, Miklovičová E. Estimation of process noise variances from the measured output sequence with application to the empirical model of type 1 diabetes. Biomed Signal Process Control 2023;84:104773.
- [38] Protter MH, Morrey CB. Differentiation under the integral sign. In: Intermediate calculus. New York, NY: Springer New York; 1985, p. 421-53.
- [39] Stewart J. Calculus. 6th ed.. Boston, MA: Cengage Learning; 2008, p. 1308.
- [40] Man CD, Rizza RA, Cobelli C. Mixed meal simulation model of glucose-insulin system. In: 2006 International conference of the IEEE engineering in medicine and biology society. 2006, p. 307-10.
- [41] Dalla Man C, Rizza RA, Cobelli C. Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 2007;54(10):1740-9.
- [42] Kirchsteiger H, Pölzer S, Johansson R, Renard E, del Re L. Direct continuous time system identification of MISO transfer function models applied to type 1 diabetes. In: 2011 50th IEEE conference on decision and control and European control conference. 2011, p. 5176-81.
- [43] Kirchsteiger H, Johansson R, Renard E, del Re L. Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes. Internat J Control 2014;87(7):1454-66.
- [44] Kirchsteiger H, Estrada GC, Pölzer S, Renard E, del Re L. Estimating interval process models for type 1 diabetes for robust control design. IFAC Proc Vol. 2011;44(1):11761-6, 18th IFAC World Congress.
- [45] Ljung L. System identification: Theory for the user. In: Prentice hall information and system sciences series, Prentice Hall PTR; 1999.
- [46] Dodek M, Miklovičová E, Tárník M. Correlation method for identification of a nonparametric model of type 1 diabetes. IEEE Access 2022;10:106369-85.
- [47] Dodek M, Miklovičová E. Robust online correlation method for identification of a nonparametric model of type 1 diabetes. IEEE Access 2024;12:35899-923.
- [48] Ogata K. Discrete-Time Control Systems. 2nd ed.. USA: Prentice-Hall, Inc.; 1995.
- [49] Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 1987;10(5):622-8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-55b510e0-dfdb-4828-bde3-e44631381d67