Warianty tytułu
Języki publikacji
Abstrakty
The problem of corrosion of sanitary sewer concrete concerns the elements located just behind the expansion well. Evolving odorogenic substances and bioaerosols spread in the sewage system, cause in adverse conditions both chemical and biological corrosion of concrete. The paper presents the results of tests of samples taken from the top concrete circle and from a corroded cast iron hatch of 7 years old manhole located below the expansion well. Well elements were subjected to a strong interaction of hydrogen sulphide, which average concentration in the sewage air, during an exemplary 84 hours was 29 ppm. Concrete was gelatinous fine with noticeable outer pellicular layer of 1 mm thick and the inner layer containing aggregates (grain < 1 cm). Sulfur oxidizing, sulfates reducing, Fe2+ oxidizing bacteria, aerobic heterotrophs, anaerobic heterotrophs, nitrifiers and denitrifiers were determined. In the concrete sample, no sulfate-reducing bacteria were detected under the film-like layer and in the cast-iron manhole material, while the hatch also did not contain anaerobic heterotrophs, nitrifying and denitrifying bacteria. The sulphate content in the concrete samples tested was very high, about 20% in the mass of concrete and 50% in the weight of the binder soluble in HCl. Microscopic investigations showed that the outer layer of the concrete was very rich in gypsum, and the pH of the aqueous extract was in the range of 7-8.
Czasopismo
Rocznik
Tom
Strony
93--104
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- Faculty of Environmental Engineering and Energy, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland, Barbara.Slomka-Slupik@polsl.pl
autor
- Faculty of Environmental Engineering and Energy, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- Faculty of Environmental Engineering and Energy, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
- [1] Błaszczyk, W. (1983). Sewers. Networks and pumping stations. (in Polish) Warszawa: Arkady.
- [2] Haile, T., Nakhla, G., Allouche E. (2008). Evaluation of the resistance of mortars coated with silver bering zeolite to bacterial-induced corrosion. Corrosion Science 50, 713-720.
- [3] Haile, T., Nakhla, G., Allouche, E., Vaidya, S. (2010). Evaluation of the bactericidal characteristics of nanocopper oxide or functionalized zeolite coating for biocorrosion control in concrete sewer pipes. Corrosion Science 52, 45-53.
- [4] Jasiński, K., Gil, B. (2014). Corrosion of concrete in sanitary sewage - a forgotten problem. The Silesian University of Technology. New technologies in water supply and sewage networks and installations (in Polish), 169-188.
- [5] Pląskowski, Z. Roman M. (1975). Building constructions in a sewage treatment plant. Warszawa: Arkady.
- [6] PN-88/B-01807: Anticorrosive protection in construction. Concrete and reinforced concrete constructions. Principles of construction diagnostics.
- [7] PN-EN 206-1. Concrete. Part 1: Requirements, properties, production and compliance.
- [8] Cwalina, B. (2008). Biodeterioration of concrete. Architecture Civil Engineering Environment, 4, 133-140.
- [9] O’Connell, M., McNally, C., Richardson, M.G. (2010). Biochemical attack on concrete in wastewater applications: A state of the art review. Cement and Concrete Composites, 32, 479-485.
- [10] Saricimen, H. Shameem, M. Barry, M.S. Ibrahim, M. Abbasi, T.A. (2003). Durability of proprietary cementitious materials for use in wastewater transport systems. Cement and Concrete Composites, 25(4-5), 421-427.
- [11] Grengg, C. Mittermayr, F. Baldermanna, A. Böttcher, M.E. Leis, A. Koraimanne, G. Grunert, P. Dietzel, M. (2015). Microbiologically induced concrete corrosion: A case study from a combined sewer Network. Cement and Concrete Research, 77, 16-25.
- [12] Rao, T. S., Sairam, T. N., Viswanathan, B., Nair, K.V.K. (2000). Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system. Corrosion Science, 42(8), 1417-1431.
- [13] Kośmider, J., Mazur-Chrzanowska, B., Wyszyński, B. (2002). Odors. (in Polish) Warszawa: Wydawnictwa Naukowe PWN.
- [14] Dieter, W. (2001). Municipal sewage pumping stations. (in Polish.) Warszawa: Wydawnictwo Seidel- Przywecki Sp. z o.o.
- [15] Dąbrowski, W. (2004). The impact of sewerage systems on the environment. (in pol.) Kraków: Wydawnictwo Politechnika Krakowska im. Tadeusza Kościuszki.
- [16] Gil, B., Kawczyński, A. (2017). The analysis of sewer network damage. (in pol.) BK: Optimization of devices and methods in water supply and sewage disposal of urban agglomerations. Silesian University of Technology.
- [17] Witherspoon, J. (2008). Minimization of Odors and Corrosion in Collection Systems. WERF Research Report Series. IWA Publishing.
- [18] Łowińska-Kluge, A. (2008). Copper slag as an ingredient of cement composites with increased durability. (in pol.) Rozprawy, nr 419, Poznań: Publisher of Poznan University of Technology.
- [19] Cywiński, B., Gdula, St., Kempa E., Kurbiel J., Płoszański H. (1983). Wastewater treatment. Part 1. Mechanical and chemical treatment. (in Polish) Warszawa: Arkady.
- [20] PN-80/B-01800. Anticorrosive protection in construction (in Polish).
- [21] Tayfun Uygunoğlu, Ibrahim Gunes. (2015). Biogenic corrosion on ribbed reinforcing steel bars with different bending angles in sewage systems. Construction and Building Materials, 96(15), 530-540.
- [22] Basiński, A., Bielański, A., Gumiński K. (1966). Physical chemistry. (in pol.) Warszawa: Państwowe Wydawnictwo Naukowe PWN.
- [23] Kurdowski, W. (2010). The chemistry of cement and concrete. Warszawa: PWN. Kraków: Polski Cement.
- [24] Słomka-Słupik, B., Zybura, A. (2017). Thaumasite non-sulphate attack at ambient temperature and pressure. Architecture Civil Engineering Environment, 10(3), 73-80.
- [25] Słomka-Słupik, B. (2009). The changes of phases composition of the paste from cement CEM III/A under the influence of NH4CI water solution. Cement Wapno Beton, 2, 61-66.
- [26] Słomka-Słupik, B., Zybura, A. (2009). Mechanism of concrete damage in industrial wastewater treatment plant facilities. Materiały Budowlane, 448(12), 14-15.
- [27] Słomka-Słupik, B., Zybura, A. (2010). The changes in the microstructure of the hydrated cement paste subjected to decalcification. Cement Wapno Beton 6, 333-339.
- [28] Piasta, W. G. (2000). Sulphate corrosion of concrete under long-term load. (in Polish) Kielce: Kielce University of Technology.
- [29] Kołwzan, B. (2011). The analysis of the phenomenon of biofilm - the conditions of its formation and functioning. (in pol.) Ochrona Środowiska, 4, 3-14.
- [30] Cwalina, B., Dzierżewicz, Z. (2007). Factors favoring the biological corrosion of reinforced concrete structures. (in Polish) Przegląd budowlany, 7-8, 52-59.
- [31] Cwalina, B. (2003). The role of microorganisms in the deterioration of natural building stones. Journal of Polish Mineral Engineering Society, 1, 39-48.
- [32] Melchers, R. E., Wells, P.A. (2007). Modelling the long term corrosion of reinforced concrete sewers. ResearchGate.net.
- [33] EN196-2:2005 - Cement testing methods. Part 2: Chemical analysis of cement.
- [34] Jin, X., Cheng, S. & Maocheng, Y., Fuhui, W. (2012). Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution. International Journal of Electrochemical Science, 7, 11281-11296.
- [35] Davis, J.L., Nica, D., Shields, K., Roberts, D.J. (1998). Analysis of concrete from corroded sewer pipe. International Biodeterioration & Biodegradation, 42, 75-84.
- [36] Węglowski, W. (2008). Modeling of concrete damage caused by sulphate corrosion (dissertation (in pol.), Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk). Poland, Warszawa.
- [37] Rawat, A., Sharma, N., Khandelwal, A. (2014). Microbiological causes of corrosion, Digital Refining, 1-7.
- [38] Zapała, J. (2010). Negative aspects of the impact of bacteria on concrete. Structure, 2, 14-17.
- [39] Wołejko, E., Matejczyk, M. (2011). The problem of biological corrosion in construction. Civil and Environmental Engineering, 2, 2081-3279.
- [40] Kielemoes, J., Boever, P., Verstraete, W. (2000). Influence of denitrification on the corrosion of iron and stainless steel powder. Environmental Science & Technology, 34, 663-671,
- [41] White, C., Tancos, M., Lytle, D. A. (2011). Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System. Applied and Environmental Microbiology, 77, 5557-5561.
- [42] Baszkiewicz, J., Kamiński M. (2006). Corrosion of materials. (in Polish) Warszawa: OWPN.
- [43] Pak, K.-R., Lee, H.-J., Lee, H.-K., Kim, Y.-K., Oh, Y.-S., Choi, S.-C. (2003). Involvement of Organic Acid During Corrosion of Iron Coupon by Desulfovibrio desulfuricans. Journal of Microbiology and Biotechnology, 13(6), 937-941.
- [44] Valix M., Zamri D. Mineyama H., Cheung W.H., Shi J., Bustamante H. (2012). Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers. Chinese Journal of Chemical Engineering, 20(3), 433-438.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-55ad6fb2-a034-4618-9f0d-439aa3f348de