Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 97, nr 5 | 406--415
Tytuł artykułu

Test bench and model research of hybrid energy storage

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on research into and simulations of an energy storage system with high efficiency (or high durability), consisting of an electrochemical battery, which was connected to a ultracapacitor by voltage converters. An active connection between the battery and the ultracapacitor leads to good load distribution during charging and discharging. By adjusting the DC/DC converter system to a predefined exemplary load cycle, the ultracapacitor assumes high momentary current demand, while the remaining range of power demand is covered by the electrochemical battery. This way the ultracapacitor is used as an efficient energy source, reducing high current consumption from the battery, thus limiting energy losses in the battery and increasing its durability. This paper presents test bench research regarding the static and dynamic states of battery and ultracapacitor work. It contains a discussion on the theoretical and analytical relations underpinning and informing the development of the battery and ultracapacitor models. The paper shows the characteristics of voltage, current, and heat generation on the battery and ultracapacitor selected on the basis of the adopted cycle of power demand. The hybrid energy storage system proposed in this work is particularly suited for use in the zero-emissions building sector, associated with renewable energy sources and other distributed generation devices, and for their stable, durable and efficient operation.
Wydawca

Rocznik
Strony
406--415
Opis fizyczny
Bibliogr. 84 poz., rys., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland , a.chmielewski@mechatronika.net.pl
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Construction Machinery Engineering, Narbutta 84, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
  • [1] Directive 2009/28/EC of the council of 23 april 2009, on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.
  • [2] Directive 2012/27/EU of the European Parliment and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC.
  • [3] A. Chmielewski, R. Gumiński, J. Mączak, S. Radkowski, P. Szulim, Aspects of balanced development of res and distributed microcogeneration use in poland: Case study of a μchp with stirling engine, Renewable and Sustainable Energy Reviews 60 (2016) 930–952.
  • [4] CO EUR 13 CONCL 5 (2030 CLIMATE AND EERGY POLICY FRAMEWORK), Brussels (24 October 2014).
  • [5] L. Szablowski, J. Milewski, J. Kuta, K. Badyda, Control strategy of a natural gas fuelled piston engine working in distributed generation system, Rynek Energii (3) (2011) 33–40.
  • [6] A. Chmielewski, R. Gumiński, J. Mączak, Selected properties of the dynamic model of the piston-crankshaft assembly in stirling engine combined with the thermodynamic submodel, International Journal of Structural Stability and Dynamics (2017) 1740009.
  • [7] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal combustion engine fuelled by natural gas operating in distributed generation, Energy Procedia 14 (2012) 1478–1483.
  • [8] A. Chmielewski, R. Gumiński, T. Mydłowski, A. Małecki, K. Bogdziński, Research on HONDA NHX 110 fueled with biogas, CNG and E85, in: 2nd International Conference on the Sustainable Energy and Environment Development - SEED’17 IOP Conference Series: Energy and Enviromental Studies, 2017, in print.
  • [9] J. Milewski, M. Wołowicz, Ł. Szabłowski, J. Kuta, Control strategy for a solid oxide fuel cell fueled by natural gas operating in distributed generation, Energy Procedia 29 (2012) 676–682.
  • [10] A. Chmielewski, R. Gumiński, T. Mydłowski, A. Małecki, K. Bogdziński, Research study of HONDA NHX 110 powered by an alternative fuel, in: 2nd International Conference on the Sustainable Energy and Environment Development - SEED’17 IOP Conference Series: Energy and Enviromental Studies, 2017, in print.
  • [11] Z. Chłopek, J. Biedrzycki, J. Lasocki, P. Wojcik, Assessment of the impact of dynamic states of an internal combustion engine on its operational properties, Eksploatacja i Niezawodność - Maintenance and Reliability 17 (1) (2015) 35–41.
  • [12] A. Chmielewski, R. Gumiński, J. Mączak, Selected properties of the adiabatic model of the stirling engine combined with the model of the piston-crankshaft system, in: Methods and Models in Automation and Robotics (MMAR), 2016 21st International Conference on, IEEE, 2016, pp. 543–548.
  • [13] A. Matuszewska, M. Owczuk, A. Zamojska-Jaroszewicz, J. Jakubiak-Lasocka, J. Lasocki, P. Orliński, Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors, Energy Conversion and Management 125 (2016) 309–319.
  • [14] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Research study of the micro cogeneration system with automatic loading unit, in: Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016, pp. 375–386.
  • [15] J. Lasocki, K. Kołodziejczyk, A. Matuszewska, Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide., Polish Journal of Environmental Studies 24 (3) (2015) 1427–1434.
  • [16] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Research on a micro cogeneration system with an automatic loadapplying entity, in: Challenges in Automation, Robotics and Measurement Techniques, Springer, 2016, pp. 387–395.
  • [17] P. Krawczyk, Ł. Szabłowski, S. Karellas, E. Kakaras, K. Badyda, Comparative thermodynamic analysis of compressed air and liquid air energy storage systems, Energy 142 (2018) 46–54.
  • [18] L. Szablowski, P. Krawczyk, K. Badyda, S. Karellas, E. Kakaras,W. Bujalski, Energy and exergy analysis of adiabatic compressed air energy storage system, Energy 138 (2017) 12–18.
  • [19] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: A critical review, Progress in Natural Science 19 (3) (2009) 291–312.
  • [20] X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy 137 (2015) 511–536.
  • [21] A. Chmielewski, K. Lubikowski, S. Radkowski, Energy storage technologies: review, Zeszyty Naukowe Instytutu Pojazdów – Proceedings of the Institute Of Vehicles 102 (2) (2015) 13–21.
  • [22] A. Szumanowski, C. Yuhua, P. Piórkowski, Method of battery adjustment for hybrid drive by modeling and simulation, in: Vehicle Power and Propulsion, 2005 IEEE Conference, IEEE, 2005, pp. 681–687.
  • [23] A. Szumanowski, Y. Chang, Battery management system based on battery nonlinear dynamics modeling, IEEE transactions on vehicular technology 57 (3) (2008) 1425–1432.
  • [24] A. Chmielewski, J. Mączak, P. Szulim, Experimental research and simulation model of electrochemical energy stores, in: International Conference Automation, Vol. 550 of Advances in Intelligent Systems and Computing, Springer, 2017, pp. 236–246.
  • [25] A. Chmielewski, J. Mączak, P. Szulim, Experimental research of electrochemical energy storage, in: International Conference Automation, Vol. 550 of Advances in Intelligent Systems and Computing, Springer, 2017, pp. 227–235.
  • [26] A. Czerwiński, Akumulatory, baterie, ogniwa, WKŁ, 2012.
  • [27] A. Chmielewski, S. Radkowski, Modelowanie procesu ładowania akumulatora elektrochemicznego pracującego w układzie kogeneracyjnym, Zeszyty Naukowe Instytutu Pojazdów 2 (98) (2014) 83–89.
  • [28] A. Chmielewski, P. Szulim, S. Gontarz, Modelowo-wsparte badania elektrochemicznych magazynów energii, Rynek Energii 126 (5) (2016) 37–45.
  • [29] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Badania elektrochemicznych magazynów energii [Research on electrochemical energy stores], Przegląd Elektrotechniczny 92 (10) (2016) 231–234.
  • [30] A. Chmielewski, P. Szurgott, Modelling and simulation of repeated charging/discharging cycles for selected nickel-cadmium batteries, Journal of KONES 22 (1) (2015) 55–62.
  • [31] A. Ostadi, M. Kazerani, A comparative analysis of optimal sizing of battery-only, ultracapacitor-only, and battery–ultracapacitor hybrid energy storage systems for a city bus, IEEE Transactions on Vehicular Technology 64 (10) (2015) 4449–4460.
  • [32] A. Chmielewski, K. Bogdziński, P. Szulim, T. Mydłowski, Test stand for operational research of energy storage: description and preliminary research, Zeszyty Naukowe Instytutu PojazdówIn print.
  • [33] A. H. Fathima, K. Palanisamy, Optimization in microgrids with hybrid energy systems–a review, Renewable and Sustainable Energy Reviews 45 (2015) 431–446.
  • [34] A. Chmielewski, P. Szulim, M. Gregorczyk, R. Gumiński, T. Mydłowski, J. Mączak, Model of an electric vehicle powered by a pv cell—a case study, in: Methods and Models in Automation and Robotics (MMAR), 2017 22nd International Conference on, IEEE, 2017, pp. 1009–1014.
  • [35] A. Chmielewski, R. Gumiński, K. Bogdziński, P. Szulim, J. Mączak, Model based research on electrochemical battery connected with 3 diodes model of pv module - selected properties, in: Proceedings of 14th INTERNATIONAL CONFERENCE Dynamical Systems Theory and Applications, Łód´z, Poland, 2017, in Print.
  • [36] A. Chmielewski, J. Możaryn, R. Gumiński, P. Szulim, K. Bogdziński, Experimental evaluation of mathematical and artificial neural network modeling of energy storage system, in: Proceedings of 14th INTERNATIONAL CONFERENCE Dynamical Systems Theory and Applications, Łódź, Poland, 2017, in Print.
  • [37] R. Zheng, R. Cai, M. Li, An on-line active energy flow split strategy for battery-ultracapacitor energized pmsm driving system, in: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, IEEE, 2016, pp. 2694–2701.
  • [38] M. Ruba, S. Ciornei, H. Hedesiu, C. Martis, Complete fpga based realtime motor drive simulator with bidirectional battery and ultracapacitor power supply, in: Advanced Topics in Electrical Engineering (ATEE), 2017 10th International Symposium on, IEEE, 2017, pp. 186–191.
  • [39] T. Azib, C. Larouci, A. Chaibet, M. Boukhnifer, Online energy management strategy of a hybrid fuel cell/battery/ultracapacitor vehicular power system, IEEJ Transactions on Electrical and Electronic Engineering 9 (5) (2014) 548–554.
  • [40] A. Mirzaei, A. Jusoh, Z. Salam, E. Adib, H. Farzanehfard, Analysis and design of a high efficiency bidirectional dc–dc converter for battery and ultracapacitor applications, Simulation Modelling Practice and Theory 19 (7) (2011) 1651–1667.
  • [41] A. Kuperman, I. Aharon, A. Kara, S. Malki, A frequency domain approach to analyzing passive battery–ultracapacitor hybrids supplying periodic pulsed current loads, Energy conversion and management 52 (12) (2011) 3433–3438.
  • [42] H. Marzougui, M. Amari, A. Kadri, F. Bacha, J. Ghouili, Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle, International Journal of Hydrogen Energy 42 (13) (2017) 8857–8869.
  • [43] W. Henson, Optimal battery/ultracapacitor storage combination, Journal of Power Sources 179 (1) (2008) 417–423.
  • [44] B. Hredzak, V. G. Agelidis, G. Demetriades, Application of explicit model predictive control to a hybrid battery-ultracapacitor power source, Journal of Power Sources 277 (2015) 84–94.
  • [45] P. Zhang, A. Mills, J. Zambreno, P. H. Jones, The design and integration of a software configurable and parallelized coprocessor architecture for lqr control, Journal of Parallel and Distributed Computing 106 (2017) 121–131.
  • [46] A. Kuperman, I. Aharon, Battery–ultracapacitor hybrids for pulsed current loads: A review, Renewable and Sustainable Energy Reviews 15 (2) (2011) 981–992.
  • [47] T. D. Atmaja, et al., Energy storage system using battery and ultracapacitor on mobile charging station for electric vehicle, Energy Procedia 68 (2015) 429–437.
  • [48] H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, A. M. Khambadkone, Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications, IEEE transactions on power electronics 26 (3) (2011) 923–930.
  • [49] M. M. Patankar, R. G. Wandhare, V. Agarwal, A high performance power supply for an electric vehicle with solar pv, battery and ultracapacitor support for extended range and enhanced dynamic response, in: Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, IEEE, 2014, pp. 3568–3573.
  • [50] A. Szumanowski, P. Piorkowski, Y. Chang, Batteries and ultracapacitors set in hybrid propulsion system, in: Power Engineering, Energy and Electrical Drives, 2007. POWERENG 2007. International Conference on, IEEE, 2007, pp. 122–127.
  • [51] G. Mandic, A. Nasiri, Modeling and simulation of a wind turbine system with ultracapacitors for short-term power smoothing, in: Industrial Electronics (ISIE), 2010 IEEE International Symposium on, IEEE, 2010, pp. 2431–2436.
  • [52] E. Manla, G. Mandic, A. Nasiri, Development of an electrical model for lithium-ion ultracapacitors, IEEE Journal of Emerging and Selected Topics in Power Electronics 3 (2) (2015) 395–404.
  • [53] M. Michalczuk, L. M. Grzesiak, B. Ufnalski, Experimental parameter identification of battery-ultracapacitor energy storage system, in: Industrial Electronics (ISIE), 2015 IEEE 24th International Symposium on, IEEE, 2015, pp. 1260–1265.
  • [54] X. del Toro García, C. de la Cruz, P. Roncero-Sánchez, A. Parreño, A small-scale hybrid energy storage system for modeling and control validation purposes, in: Industrial Electronics Society, IECON 2015-41st Annual Conference of the IEEE, IEEE, 2015, pp. 003702–003707.
  • [55] N. Jayalakshmi, D. Gaonkar, V. Kumar, R. Karthik, Batteryultracapacitor storage devices to mitigate power fluctuations for grid connected pv system, in: India Conference (INDICON), 2015 Annual IEEE, IEEE, 2015, pp. 1–6.
  • [56] D. Pavkovic, M. Cipek, M. Hrgetic, M. Mance, Dc bus feedforward/feedback control for evs with battery/ultracapacitor energy storage system, in: Smart Technologies, IEEE EUROCON 2017-17th International Conference on, IEEE, 2017, pp. 318–323.
  • [57] P. Piórkowski, Zastosowanie superkondensatorów do rozruchu silników spalinowych w trudnych warunkach [Application of supercapacitors to start combustion engines in tough conditions], Logistyka (3) (2015) 3918–3927, in Polish.
  • [58] P. Piórkowski, The influence of ultracapacitors on the stability of primary source’s operation, Przegla˛d Mechaniczny (4) (2013) 38–42.
  • [59] A. Khaligh, Z. Li, Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art, IEEE transactions on Vehicular Technology 59 (6) (2010) 2806–2814.
  • [60] A. Chu, P. Braatz, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles: I. initial characterization, Journal of power sources 112 (1) (2002) 236–246.
  • [61] A. Burke, Cost-effective combinations of ultracapacitors and batteries for vehicle application, in: Proceeding AABC 2002, Las Vegas, 2002.
  • [62] T. Bartley, Ultracapacitors and batteries for energy storage in heavyduty hybrid-electric vehicles, in: presented at the 22nd Int. Battery Seminar Exh., Fort Lauderdale, FL, 2005.
  • [63] R. M. Schupbach, J. C. Balda, The role of ultracapacitors in an energy storage unit for vehicle power management, in: Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, Vol. 5, IEEE, 2003, pp. 3236–3240.
  • [64] J. Van Mierlo, P. Van den Bossche, G. Maggetto, Models of energy sources for ev and hev: fuel cells, batteries, ultracapacitors, flywheels and engine-generators, Journal of power sources 128 (1) (2004) 76–89.
  • [65] A. Kuperman, I. Aharon, A. Kara, S. Malki, A frequency domain approach to analyzing passive battery–ultracapacitor hybrids supplying periodic pulsed current loads, Energy conversion and management 52 (12) (2011) 3433–3438.
  • [66] N. M. Ismail, M. K. Mishra, Control and operation of unified power quality conditioner with battery-ultracapacitor energy storage system, in: Power Electronics, Drives and Energy Systems (PEDES), 2014 IEEE International Conference on, IEEE, 2014, pp. 1–6.
  • [67] F. Guo, Y. Ye, R. Sharma, A modular multilevel converter based battery-ultracapacitor hybrid energy storage system for photovoltaic applications, in: Power Systems Conference (PSC), 2015 Clemson University, IEEE, 2015, pp. 1–6.
  • [68] F. Guo, R. Sharma, A modular multilevel converter with half-bridge submodules for hybrid energy storage systems integrating battery and ultracapacitor, in: Applied Power Electronics Conference and Exposition (APEC), 2015 IEEE, IEEE, 2015, pp. 3025–3030.
  • [69] R. Gu, P. Malysz, A. Emadi, A novel battery/ultracapacitor hybrid energy storage system analysis based on physics-based lithium-ion battery modeling, in: Transportation Electrification Conference and Expo (ITEC), 2015 IEEE, IEEE, 2015, pp. 1–6.
  • [70] A. Chmielewski, S. Radkowski, Prosumer on the energy market: case study, Zeszyty Naukowe Instytutu Pojazdów-Proceedings of the Institute of Vehicles 102 (2015) 23–29.
  • [71] J. García-Villalobos, I. Zamora, J. San Martín, F. Asensio, V. Aperribay, Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches, Renewable and Sustainable Energy Reviews 38 (2014) 717–731.
  • [72] J. D. Kim, M. Rahimi, Future energy loads for a large-scale adoption of electric vehicles in the city of los angeles: Impacts on greenhouse gas (ghg) emissions, Energy Policy 73 (2014) 620–630.
  • [73] Polskie Sieci Elektroenergetyczne, accessed 26.02.2017. URL http://www.pse.pl/index.php?dzid=14&did=2477
  • [74] International Energy Agency, accessed 15.10.2017. URL https://www.iea.org/
  • [75] Ministerstwo Energii - Plan Rozwoju Elektromobilności w Polsce, accessed 08.10.2017. URL http://bip.me.gov.pl/node/26453
  • [76] Nissan Leaf, in Polish. URL https://www.nissan.pl/pojazdy/nowe-pojazdy/leaf/ wydajno%C5%9B%C4%87-akumulator.html
  • [77] W. Jing, C. H. Lai, S. H. W. Wong, M. L. D. Wong, Battery supercapacitor hybrid energy storage system in standalone dc microgrids: a review, IET Renewable Power Generation 11 (4) (2016) 461–469.
  • [78] E. Jankowska, K. Kopciuch, M. Błażejczak, W. Majchrzycki, P. Piórkowski, Badanie połączenia akumulatora ołowiowego z superkondensatorem jako układu hybrydowego do rozruchu silnika spalinowego [study on combination of lead acid bettery with supercapacitors into a hybrid system to start combustion engine], Komel Maszyny Elektryczne - Zeszyty Problemowe 114 (2) (2017) 107–114, in Polish.
  • [79] Y. Lai, S. Du, L. Ai, L. Ai, Y. Cheng, Y. Tang, M. Jia, Insight into heat generation of lithium ion batteries based on the electrochemical thermal model at high discharge rates, International Journal of Hydrogen Energy 40 (38) (2015) 13039–13049.
  • [80] J. Li, Y. Cheng, M. Jia, Y. Tang, Y. Lin, Z. Zhang, Y. Liu, An electrochemical–thermal model based on dynamic responses for lithium iron phosphate battery, Journal of Power Sources 255 (2014) 130–143.
  • [81] Y. Saito, M. Shikano, H. Kobayashi, Heat generation behavior during charging and discharging of lithium-ion batteries after long-time storage, Journal of Power Sources 244 (2013) 294–299.
  • [82] Q. Wang, Q. Sun, P. Ping, X. Zhao, J. Sun, Z. Lin, Heat transfer in the dynamic cycling of lithium–titanate batteries, International Journal of Heat and Mass Transfer 93 (2016) 896–905.
  • [83] L. Saw, Y. Ye, A. Tay, Electro-thermal characterization of lithium iron phosphate cell with equivalent circuit modeling, Energy Conversion and Management 87 (2014) 367–377.
  • [84] A. Chmielewski, P. Piórkowski, R. Gumiński, K. Bogdziński, J. Możaryn, Model-based research on ultracapacitors, in: Advances in Intelligent Systems and Computing, International Conference Automation, 22nd Conference on Automation – Innovations and Future Perspectives, Springer, 2018, in Print.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-558144bf-b128-4f6a-b4c8-947b5b794142
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.