Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 22, iss. 1 | 74--82
Tytuł artykułu

Effect of Water Parameters on Decolourization Efficiency of Organic Dyes by Dielectric Barrier Discharge Plasma

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonthermal plasma discharge is used for the decolourization of dyes used in textile industry. Two dyes were considered, namely methylene blue and malachite green in aqueous solution. Plasma was generated by a Pin-water surface DBD between a metal pin electrode placed in air and the surface of an aqueous dye solution filling a glass container. Active radicals, especially hydroxyl radicals, generated by plasma in air penetrated the aqueous dye solution and induced the oxidizing reactions leading to the dyeing material disintegration. The measurements of solution parameters, including pH, oxidation-reduction potential, and conductivity can help to optimize the plasma decolourization efficiency of the two dye solutions. It was found that the pH values of the two dye solutions decrease with the increasing plasma treatment time. This is accompanied by an increase of the oxidation-reduction potentials and conductivities. The concentration of hydrogen peroxide formed in the two dye solutions during plasma treatment was found to increase with the plasma treatment time. The decolourization efficiencies of the two dye solutions increase with plasma treatment time and can be related to the solution parameters, including reduction of the pH values, increase in the oxidation-reduction potentials as well as solution conductivities and increase of hydrogen peroxide during the plasma treatment time.
Wydawca

Rocznik
Strony
74--82
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Plasma & Energy Applications Research Laboratory, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt, melshaer2901@gmail.com
  • Plasma & Energy Applications Research Laboratory, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
  • Plasma & Energy Applications Research Laboratory, Department of Engineering Physics and Mathematics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
Bibliografia
  • 1. Anjaneyulu Y., Sreedhara Chary N., Samuel Suman Raj D. 2015. Decolourization of industrial effluents – available methods and emerging technologies – a review. Rev. Environ. Sci. Bio., 4, 245–273.
  • 2. Attri P., Yusupov M., Park J.H., Lingamdinne L.P., Koduru J.R., Shiratani M., Choi E.H., Bogaerts A. 2016. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Sci. Rep., 6(34419), 1–13.
  • 3. Bruggeman, P.J., Iza, F., Brandenburg, R. 2017. Foundations of atmospheric pressure nonequilibrium plasmas. Plasma Sources Sci. Technol., 26(123002), 1–17.
  • 4. Cesaro A., Naddeo V., Belgiorno V. 2013. Wastewater treatment by combination of advanced oxidation processes and conventional biological systems. J. Bioremed Biodeg., 4(208) 1–8.
  • 5. El Shaer M., Eldaly M., Heikal G., Sharaf Y., Diab H., Mobasher M., Rousseau A. 2020. Antibiotics degradation and bacteria inactivation in water by cold atmospheric plasma discharges above and below water surface. Plasma Chem. Plasma Process., 40, 971–983.
  • 6. Garrido-Cardenas J.A., Esteban-García B., Agüera A., Sánchez-Pérez J.A., Manzano-Agugliaro. 2020. Wastewater treatment by advanced oxidation process and their worldwide research trends. Int. J. Environ. Res. Public Health, 17(170), 1–19.
  • 7. Gharagozalian M., Davoud Dorranian D., Ghoranneviss M. 2017. Water treatment by the AC gliding arc air plasma. J. Theor. Appl. Phys., 11(3), 171–180.
  • 8. Giardina, A., Schiorlin, M., Marotta, E., Paradisi, C. 2020. Atmospheric pressure non-thermal plasma for air purification: ions and ionic reactions induced by dc+ corona discharges in air contaminated with acetone and methanol. Plasma Chem. Plasma Process., 40, 1091–1107.
  • 9. Gorbanev Y., O’Connell D., Chechik V. 2016. Nonthermal plasma in contact with water: the origin of species. Chem. Eur. J. 2016, 22, 3496–3505.
  • 10. Groele J., Foster J. 2019. Hydrogen peroxide interference in chemical oxygen demand assessments of plasma treated waters. Plasma, 2, 294–302.
  • 11. Hamdan A., Jing‑Lin Liu J. L., Cha M. S. 2018. Microwave plasma jet in water: Characterization and feasibility to wastewater treatment. Plasma Chem. Plasma Process., 38, 1003–1020.
  • 12. Hoffer P., Kolacek K., Stelmashuk V., Lukes P. 2015. Penetration of gas discharge through the gas-liquid interface into the bulk volume of conductive aqueous solution. IEEE T. Plasma Sc.,43(11), 3868-3875.
  • 13. Kant R. 2012. Textile dyeing industry an environmental hazard. Nat. Sci., 4(1), 22–26.
  • 14. Laroussi, M. 2020. Cold plasma in medicine and healthcare: The new frontier in low temperature plasma applications. Front. Phys., 8, art 74.
  • 15. Lellis B., Fávaro-Polonio C.Z., Pamphile J.A, Polonio J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotech. Res. Innovation., 3, 275–290.
  • 16. Liu J., He B, Chen Q., Li J., Xiong Q., Yue G., Zhang X., Yang S., Liu H., Liu Q.H. 2016. Direct synthesis of hydrogen peroxide from plasma-water interactions. Sci. Rep., 6(38454), 1–7.
  • 17. Maslani A., Sember V. 2014. Emission spectroscopy of OH radical in water-argon arc plasma jet. J. Spectrosc. 2014 (952138), 1–6.
  • 18. Massima Mouele E.S., Tijani J.O., Ojo O. Fatoba O.O., Petrik L.F. 2015. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations – a critical review. Environ. Sci. Pollut. Res., 22, 18345–18362.
  • 19. Nguyen D.V., Ho P.Q., Pham T.V., Nguyen T.V., Kim L. 2019. Treatment of surface water using cold plasma for domestic water supply. Environ. Eng. Res., 24(3), 412–417.
  • 20. Njiki A., Kamgang-Youbi G., Laminsi S., Lontsi C.D., Payom G., Nola M., Ngameni E. 2016. Gliding arc discharge-assisted biodegradation of crystal violet in solution with Aeromonas hydrophila strain. Int. J. Environ. Sci. Technol., 13, 263–274.
  • 21. Olszewski P., Li J.F., Liu D.X., Walsh J.L. 2014. Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process. J. Hazard. Mater., 279, 60–66.
  • 22. Oturan M.A., Aaron J.J. 2014. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Env. Sci. Tec, 44, 2577–2641.
  • 23. Preis S., Panorel I.C, Kornev I., Hatakka H., Kallas J. 2013. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation. Water Sci. Technol., 68 (7), 1536–1542.
  • 24.Takeuchi N., Ishibashi N. 2018. Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode. Plasma Sources Sci. Technol., 27(4), 1–9.
  • 25. Tichonovas M., Krugly E., Racys V., Hippler R., Kauneliene V., Stasiulaitiene I., Martuzevicius D. 2013. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chem. Eng. J., 229, 9–19.
  • 26. Varilla C., Marcone M., Annor G.A. 2020. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9, 1–17.
  • 27. Wahyudiono, Machmudah S., Goto M. 2013. Pulsed discharge plasma over a water surface induces decoloration of dyes. J. Phys. Conf. Ser., 441(012008), 1–7.
  • 28. Wu L., Xie Q., Lv Y., Wu Z., Liang X., Lu M., Nie Y. 2019. Degradation of methylene blue via dielectric barrier discharge plasma treatment. Water, 11(1818), 1–13.
  • 29. Yaseen D.A., Scholz M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Env. Sc. Technol., 16, 1193–1226.
  • 30. Zhang Z., Shen J., Cheng C., Xu Z., Xia W. 2018. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water. Plasma Sci. Technol., 20(044009), 1–6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-551757ff-c1c8-41af-a7c6-933551fc4335
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.