Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 20, nr 1 | 7--14
Tytuł artykułu

Analytic in planar domains functions with preassigned asymptotic set

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1954 M. Heins proved that, for every analytic set A containing the infinity, there exists an entire function whose set of asymptotic values at the infinity equals A. We obtain analogs of this result for functions analytic in planar domains of arbitrary connectivity.
Wydawca

Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Mathematics Petrozavodsk State University, 185640 Petrozavodsk, Russia, g_ek@inbox.ru
Bibliografia
  • [1] L. V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Soc. Sci. Fenn. Nova Ser. A 1 (1930), no. 9, 1-40.
  • [2] F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Natl. Acad. Sci. USA 41 (1955), no. 6, 379-382.
  • [3] K. A. Bystrova, Boundary behaviour of functions, meromorphic in the multiply connected domains (in Russian), Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 18 (2011), 3-6.
  • [4] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, Cambridge, 1966.
  • [5] E. G. Ganenkova and V. V. Starkov, Asymptotic values of functions, analytic in planar domains, Issues Anal. 2(20) (2013), no. 1, 38-42.
  • [6] A. A. Goldberg and I. V. Ostrovskii, Value Distributions of Meromorphic Functions, American Mathematical Society, Providence, 2008.
  • [7] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, 1969.
  • [8] W. Gross, Eine ganze Funktion für die jede komplexe Zahl Konvergenzwert ist, Math. Ann. 79 (1918), 201-208.
  • [9] F. Hausdorff, Set Theory, AMS Chelsea Publishing, New York, 1957.
  • [10] M. Hazewinkel, Encyclopaedia of Mathematics. Vol. 1: A-B, Kluwer Academic, Dordrecht, 1988.
  • [11] M. Hazewinkel, Encyclopaedia of Mathematics. Vol. 5: I-Lituus, Kluwer Academic, Dordrecht, 1990.
  • [12] M. Heins, The set of asymptotic values of an entire function, in: Proceedings of the 12th Scandinavian Mathematical Congress (Lund 1953), Lunds Universitets Matematiska Institution, Lund (1954), 56-60.
  • [13] F. Iversen, Recherches sur les fonctions inverses des fonctions meromorphes, Imprimerie de la Societe de litterature finnoise, Helsinki, 1914.
  • [14] P. Liczberski and V. V. Starkov, On locally biholomorhic mappings from multi-connected domains onto the open disk, J. Math. Anal. Appl. 353 (2009), 85-87.
  • [15] P. Liczberski and V. V. Starkov, On locally biholomorhic mappings from multi-connected onto simply connected domains, Ann. Polon. Math. 85 (2005), no. 2, 135-143.
  • [16] S. Mazurkiewicz, Surles points singuliers d’une fonction analytique, Fund. Math. 17 (1931), 26-29.
  • [17] G. Piranian and P. Lappan, Holomorphic functions with dense set of Plessner points, Proc. Amer. Math. Soc. 21 (1969), no. 3, 555-556.
  • [18] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, New York, 1992.
  • [19] M. Sierpinski, General Topology, University of Toronto Press, Toronto, 1952.
  • [20] V. V. Starkov, Locally biholomorphic mappings of multiconnected domains, Sib. Math. J. 48 (2007), no. 4, 733-739.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-54ed7788-848d-419d-a65b-2e2ed60e8794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.