Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Nr 3 | 10--35
Tytuł artykułu

Sustainable Construction in post-industrial Ursus district in Warsaw: Biologically active areas on roofs and underground garages

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urbanization leads to the expansion of urban areas and increased population density, which has a negative impact on natural resources, including green spaces. To address these environmental challenges, various green measures and sustainable development practices offer environmental, economic and societal benefits. This article provides an overview of different types of green roofs, discusses their advantages and disadvantages, and outlines current legislation on biologically active areas in new residential developments. A residential project in the Ursus district of Warsaw was used as a case study to compare intensive and extensive green roofs. The project involved the installation of vegetation on the roof of an underground garage and later on the roof of the building, with detailed descriptions of the roof layers and vegetation used. One experiment examined seasonal variations in water runoff from green roofs. Three test sites simulated different seasons, with substrates in containers and vegetation watered twice daily. Results showed that spring, with temperatures around 15°C, provided optimal conditions for green roof establishment, while winter posed challenges due to frost. Both intensive and extensive green roofs have positive environmental, social and economic impacts, supporting the pillars of sustainable development. Examples of global green infrastructure further illustrate these benefits.
Wydawca

Rocznik
Tom
Strony
10--35
Opis fizyczny
Bibliogr. 75 poz., rys., tab.
Twórcy
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland, mi.kosakiewicz@gmail.com
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
  • Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Bibliografia
  • 1. Abdulahaad, E. S. (2020). The Sustainable Design Technologies in Babylonian Architecture. In IOP Conference Series: Materials Science and Engineering (Vol. 881, No. 1, p. 012007). IOP Publishing. DOI 10.1088/1757-899X/881/1/012007
  • 2. Algarni, S., Almutairi, K., & Alqahtani, T. (2022). Investigating the performance of energy management in office buildings by using a suitable green roof design to reduce the building’s energy consumption. Sustainable Energy Technologies and Assessments, 54, 102825. https://doi.org/10.1016/j.seta.2022.102825
  • 3. Bajorek, G., Kiernia-Hnat, M., & Świerczyński, W. (2015). Po co beton ma być wodoszczelny?. Budownictwo, Technologie, Architektura, (1), 76-78.
  • 4. Bąk, J. & Królikowska, J. (2016). ZIELONE DACHY W POLSCE JAKO ELEMENT BŁĘKITNO–ZIELONEJ INFRASTRUKTURY.
  • 5. Berg, A. B., Hurajová, E., Černý, M., & Winkler, J. (2022). Anthropogenic Ecosystem of Green Roofs from the Perspective Rainwater Management. Acta Scientiarum Polonorum Architectura, 21(1), 9-19. https://doi.org/10.22630/aspa.2022.21.1.2
  • 6. Bevilacqua, P. (2021). The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results. Renewable and Sustainable Energy Reviews, 151, 111523. https://doi.org/10.1016/j.rser.2021.111523
  • 7. Cascone, S., & Rosso, F. (2023). Green roof as a passive cooling technique for the Mediterranean climate: An experimental study. TeMa, 09(02). https://doi.org/10.30682/tema090006
  • 8. Cappello, C., Giuffrida, S., Trovato, M. R., & Ventura, V. (2022). Environmental identities and the sustainable city. The green roof prospect for the ecological transition. Sustainability, 14(19), 12005. https://doi.org/10.3390/su141912005
  • 9. Chabada, M., Durica, P., & Juras, P. (2024). Experimental Analysis of the Influence of Seasonality on the Temperature Regime of Extensive Roofs in Central Europe. Buildings, 14(3), 812.
  • 10. Chen, P. Y., Pang, C. C., & Sung, G. Y. (2024). Developing an integrated model relating substrate water content to indoor temperature reduction for irrigation-decision support of a green roof. Heliyon.
  • 11. Chmura, A., & Kobierska-Maciuszko, E. (1997). The Warsaw University Library Design for a new building. EUROPEAN RESEARCH LIBRARIES COOPERATION, 7, 276-286.
  • 12. Cristiano, E., Deidda, R., & Viola, F. (2021). The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Science of the Total Environment, 756, 143876. https://doi.org/10.1016/j.scitotenv.2020.143876
  • 13. Drozd, W. (2015). Dachy zielone rozwiązaniem dla obiektów budowlanych. Przegląd Budowlany, 86(4), 14-21.
  • 14. Drozd, W. (2019). Problems and benefits of using green roofs in Poland. In IOP Conference Series: Earth and Environmental Science (Vol. 214, No. 1, p. 012076). IOP Publishing. DOI 10.1088/1755-1315/214/1/012076
  • 15. Fang, H., Li, Y., Gu, X., Du, Y., Chen, P., & Hu, H. (2024). Evapotranspiration, water use efficiency, and yield for film mulched maize under different nitrogen-fertilization rates and climate conditions. Agricultural Water Management, 301, 108935.
  • 16. García-Lamarca, M., Anguelovski, I., Cole, H. V., Connolly, J. J., Pérez-del-Pulgar, C., Shokry, G., & Triguero-Mas, M. (2022). Urban green grabbing: Residential real estate developers discourse and practice in gentrifying Global North neighborhoods. Geoforum, 128, 1-10. https://doi.org/10.1016/j.geoforum.2021.11.016
  • 17. Gopagani, S., Filiatrault, A., Aref, A. J., & Perrone, D. (2023). Finite-element modeling for seismic damage estimation of suspended ceiling systems. Journal of Structural Engineering, 149(2), 04022241. https://doi.org/10.1061/JSENDH.STENG-11593
  • 18. Groos N., Dages M. (2008): Millenium Park: A Model for Successful Urban Green Space Redevelopment
  • 19. Gyurkovich, M., Kołata, J., Pieczara, M., & Zierke, P. (2024). Assessment of the Greenery Content in Suburban Multi-Family Housing Models in Poland: A Case Study of the Poznań Metropolitan Area. Sustainability, 16(8), 3266. https://doi.org/10.3390/su16083266
  • 20. Hollin, C. R. (2023). The Psychological Appeal of Gardens. Taylor & Francis.
  • 21. Hopkins, G., & Goodwin, C. (2011). Living architecture: green roofs and walls. Csiro Publishing.
  • 22. HulickA, A. (2015). Zielone dachy: chwilowy trend, realna przyszłość czy utopia?.
  • 23. Janiak, J. (2019). Zieleń na elewacjach–problem czy korzyść dla budynku?. Acta Scientiarum Polonorum. Architectura, 18(1).
  • 24. Jim, C. Y., Hui, L. C., & Rupprecht, C. D. (2022). Public perceptions of green roofs and green walls in Tokyo, Japan: A call to heighten awareness. Environmental Management, 70(1), 35-53. https://doi.org/10.1007/s00267-022-01625-8
  • 25. Journal of Laws 2016, item 1395
  • 26. Kaim, K., & Kruzel, R. (2022). Legal aspects of building a house up to 70 m2 without permission. Is it worth it?. Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 27-35.
  • 27. Kania, A., Mioduszewska, M., Płonka, P., Rabiński, J. A., Skarżyński, D., Walter, E., & Weber-Siwirska, M. (2013). Zasady projektowania i wykonywania zielonych dachów i żyjących ścian. Poradnik dla gmin. Stowarzyszenie Gmin Polska Sieć “Energie Cités”, Kraków.
  • 28. Karczmarczyk, A., Baryla, A., Charazinska, P., Bus, A., & Frak, M. (2012). Wpływ substratu dachu zielonego na jakość wody z niego odpływajacej. Infrastruktura i Ekologia Terenów Wiejskich, (3/III).
  • 29. NY Times. Available online https://www.nytimes.com/2019/10/09/realestate/the-green-roof-revolution.html, access date 15.07.2024
  • 30. Koroxenidis, E., & Theodosiou, T. (2021). Comparative environmental and economic evaluation of green roofs under Mediterranean climate conditions–Extensive green roofs a potentially preferable solution. Journal of Cleaner Production, 311, 127563. https://doi.org/10.1016/j.jclepro.2021.127563
  • 31. Kronenberg, J., Haase, A., Łaszkiewicz, E., Antal, A., Baravikova, A., Biernacka, M., ... & Onose, D. A. (2020). Environmental justice in the context of urban green space availability, accessibility, and attractiveness in postsocialist cities. Cities, 106, 102862. https://doi.org/10.1016/j.cities.2020.102862
  • 32. Lechnio, J., & Malinowska, E. (2018). Weryfikacja granic mezoregionów fizycznogeograficznych w zasięgu województwa mazowieckiego. Prace i Studia Geograficzne, 63(1), 75-91.
  • 33. Liberalesso, T., Cruz, C. O., Silva, C. M., & Manso, M. (2020). Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land use policy, 96, 104693. https://doi.org/10.1016/j.landusepol.2020.104693
  • 34. Liu, H., Kong, F., Yin, H., Middel, A., Zheng, X., Huang, J., ... & Wen, Z. (2021). Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Building and Environment, 196, 107794. https://doi.org/10.1016/j.buildenv.2021.107794
  • 35. MacIvor, J. S., Appleby, M., Miotto, S., Rosenblat, H., & Margolis, L. (2024). Plant cover and biomass change on extensive green roofs over a decade and ten lessons learned. Journal of Environmental Management, 360, 121047.
  • 36. Manso, M., Teotónio, I., Silva, C. M., & Cruz, C. O. (2021). Green roof and green wall benefits and costs: A review of the quantitative evidence. Renewable and Sustainable Energy Reviews, 135, 110111. https://doi.org/10.1016/j.rser.2020.110111
  • 37. McConnell, K., Braneon, C. V., Glenn, E., Stamler, N., Mallen, E., Johnson, D. P., ... & Rosenzweig, C. (2022). A quasi-experimental approach for evaluating the heat mitigation effects of green roofs in Chicago, Illinois. Sustainable Cities and Society, 76, 103376. https://doi.org/10.1016/j.scs.2021.103376
  • 38. Michalik-Śnieżek, M., Adamczyk-Mucha, K., Sowisz, R., & Bieske-Matejak, A. (2024). Green Roofs: Nature-Based Solution or Forced Substitute for Biologically Active Areas? A Case Study of Lublin City, Poland. Sustainability, 16(8), 3131. https://doi.org/10.3390/su16083131
  • 39. Mihalakakou, G., Souliotis, M., Papadaki, M., Menounou, P., Dimopoulos, P., Kolokotsa, D., ... & Papaefthimiou, S. (2023). Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renewable and Sustainable Energy Reviews, 180, 113306. https://doi.org/10.1016/j.rser.2023.113306
  • 40. Mihai, F. C., Schneider, P., & Eva, M. (2021). Ecological engineering and green infrastructure in mitigating emerging urban environmental threats. Handbook of ecological and ecosystem engineering, 95-121. https://doi.org/10.1002/9781119678595.ch5
  • 41. Monczyński, B. (2017). ABC dachów odwróconych. Inżynier Budownictwa, 10, 44-48.
  • 42. Monczyński, B., & Rzeszowska, N. (2018). Wpływ typu dachu zielonego na poprawę parametrów termicznych stropu. Izolacje, 23, 96-98.
  • 43. Mousavi, S., Rismanchi, B., Brey, S., & Aye, L. (2021). PCM embedded radiant chilled ceiling: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 151, 111601. https://doi.org/10.1016/j.rser.2021.111601
  • 44. Myszak, A. (2010). Architektura, której integralną częścią jest zieleń. Budownictwo i Architektura, 6(1), 91-104.
  • 45. Ociepa-Kubicka, A. Ekonomiczne i ekologiczne aspekty zielonych dachów. Zesz Nauk Wyższej Szkoły Bankowej we Wrocławiu. 2015; 15 (2): 289-296.
  • 46. Paprzyca, K. (2018). Millenium Park Chicago-Smart Project & City. Środowisko Mieszkaniowe, (23), 33-39.
  • 47. Peck, S. W., Callaghan, C., Kuhn, M. E., & Bass, B. (1999). Greenbacks from green roofs: forging a new industry in Canada.
  • 48. Pogorzelski, J., Firkowicz-Pogorzelska, K., & Bobociński, A. (2006). Izolacje cieplne stropodachów odwróconych. Prace Instytutu Techniki Budowlanej, 35(3), 57-69.
  • 49. Postance, B. (2009). The Social Dynamics of Sustainable Urban Development: A Case Study of Chicago's Green Roof Infrastructure. Library and Archives Canada= Bibliothèque et Archives Canada, Ottawa.
  • 50. Rehan, R. M. (2016). Cool city as a sustainable example of heat island management case study of the coolest city in the world. HBRC journal, 12(2), 191-204.
  • 51. Rozporządzenie Ministra Środowiska z dnia 9 grudnia 2014 r. w sprawie katalogu odpadów Dz.U. 2014 poz. 1923
  • 52. Sawicki, J. (2005). Polistyren ekstrudowany XPS-zalety i zastosowanie. Izolacje, 10(11-12), 76-79.
  • 53. Sharma, A., Conry, P., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., & Chen, F. (2016). Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: Evaluation with a regional climate model. Environmental Research Letters, 11(6), 064004. DOI 10.1088/1748-9326/11/6/064004
  • 54. Shashwat, S., Zingre, K. T., Thurairajah, N., Kumar, D. K., Panicker, K., Anand, P., & Wan, M. P. (2023). A review on bioinspired strategies for an energy-efficient built environment. Energy and Buildings, 296, 113382. https://doi.org/10.1016/j.enbuild.2023.113382
  • 55. Schwitalla, T., Bauer, H. S., Warrach-Sagi, K., Bönisch, T., & Wulfmeyer, V. (2021). Turbulence-permitting air pollution simulation for the Stuttgart metropolitan area. Atmospheric Chemistry and Physics, 21(6), 4575-4597.
  • 56. Scolaro, T. P., & Ghisi, E. (2022). Life cycle assessment of green roofs: A literature review of layers materials and purposes. Science of The Total Environment, 829, 154650. https://doi.org/10.1016/j.scitotenv.2022.154650
  • 57. Simões, N., Almeida, R., Tadeu, A., Brett, M., & Almeida, J. (2020). Comparison between cork-based and conventional green roof solutions. Building and Environment, 175, 106812. https://doi.org/10.1016/j.buildenv.2020.106812
  • 58. Stępień M., (2018): Projekt planu remediacji powierzchni ziemi dla części działek ew. nr 119/1 i 98/ obręb 2-09-09, położonych przy ul. Gierdziejewskiego w Warszawie, Dzielnica Ursus, ENVIGEO, Warszawa
  • 59. Strumiłło, K. (2021, November). Sustainable city-green walls and roofs as ecological solution. In IOP Conference Series: Materials Science and Engineering (Vol. 1203, No. 2, p. 022110). IOP Publishing. DOI 10.1088/1757-899X/1203/2/022110
  • 60. Šenfeldr, M., Maděra, P., Kotásková, P., Fialová, J., Kundrata, M., & Rieger, V. (2020). The Green Roofs and Facades as a Tool of Climate Cooling in the Urban Environment. Management of Water Quality and Quantity, 39-75. https://doi.org/10.1007/978-3-030-18359-2_3
  • 61. Tabatabaee, S., Mahdiyar, A., Mohandes, S. R., & Ismail, S. (2022). Towards the development of a comprehensive lifecycle risk assessment model for green roof implementation. Sustainable cities and Society, 76, 103404. https://doi.org/10.1016/j.scs.2021.103404
  • 62. Teotónio, I., Cabral, M., Cruz, C. O., & Silva, C. M. (2020). Decision support system for green roofs investments in residential buildings. Journal of Cleaner Production, 249, 119365. https://doi.org/10.1016/j.jclepro.2019.119365
  • 63. Teotónio, I., Silva, C. M., & Cruz, C. O. (2021). Economics of green roofs and green walls: A literature review. Sustainable Cities and Society, 69, 102781. https://doi.org/10.1016/j.scs.2021.102781
  • 64. Tokarska, A., & Osyczka, D. (2011). Zielone dachy, jako odpowiedź na intensywną zabudowę miast. Zeszyty Naukowe. Inżynieria Środowiska/Uniwersytet Zielonogórski, 5-18.
  • 65. Torero, J. L. (2022). The building envelope: failing to understand complexity in tall building design. In Rethinking Building Skins (pp. 341-357). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822477-9.00001-2
  • 66. Twohig, C., Casali, Y., & Aydin, N. Y. (2022). Can green roofs help with stormwater floods? A geospatial planning approach. Urban Forestry & Urban Greening, 76, 127724. https://doi.org/10.1016/j.ufug.2022.127724
  • 67. Wooster, E. I. F., Fleck, R., Torpy, F., Ramp, D., & Irga, P. J. (2022). Urban green roofs promote metropolitan biodiversity: A comparative case study. Building and Environment, 207, 108458. https://doi.org/10.1016/j.buildenv.2021.108458
  • 68. Wang, W., Yang, H., & Xiang, C. (2023). Green roofs and facades with integrated photovoltaic system for zero energy eco-friendly building–A review. Sustainable Energy Technologies and Assessments, 60, 103426. https://doi.org/10.1016/j.seta.2023.103426
  • 69. Wang, X., Li, H., & Sodoudi, S. (2022). The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217, 109082. https://doi.org/10.1016/j.buildenv.2022.109082
  • 70. Wooster, E. I. F., Fleck, R., Torpy, F., Ramp, D., & Irga, P. J. (2022). Urban green roofs promote metropolitan biodiversity: A comparative case study. Building and Environment, 207, 108458. https://doi.org/10.1016/j.buildenv.2021.108458
  • 71. Velazquez L. (2005): Reducing Urban Heat Islands, Reducing Urban Heat Islands: Compendium of Strategies. Green Roofs – Draft. USA. 1-26.
  • 72. Vigevani, I., Corsini, D., Comin, S., Fini, A., & Ferrini, F. (2023). Methods to quantify particle air pollution removal by urban vegetation: A review. Atmospheric Environment: X, 100233. https://doi.org/10.1016/j.aeaoa.2023.100233
  • 73. Volchko, Y., Norrman, J., Ericsson, L. O., Nilsson, K. L., Markstedt, A., Öberg, M., ... & Tengborg, P. (2020). Subsurface planning: Towards a common understanding of the subsurface as a multifunctional resource. Land use policy, 90, 104316. https://doi.org/10.1016/j.landusepol.2019.104316
  • 74. Voronkova, I., & Podlasek, A. (2024). The Use of Transparent Structures to Improve Light Comfort in Library Spaces and Minimize Energy Consumption: A Case Study of Warsaw, Poland. Energies, 17(12), 3007. https://doi.org/10.3390/en17123007
  • 75. Zhang, G., & He, B. J. (2021). Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban forestry & urban greening, 58, 126992. https://doi.org/10.1016/j.ufug.2021.126992
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-54e4cf92-1e76-4221-9725-f3c62f65e937
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.