Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | T. 48, Nr 2 | 285--292
Tytuł artykułu

Several complex variables in Poland

Autorzy
Warianty tytułu
Konferencja
6th European Congress of Mathematics, 2-7 July 2012 Kraków
Języki publikacji
EN
Abstrakty
Wydawca

Rocznik
Strony
285--292
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Mathematics University of Amsterdam Science Park 904 Postbus 94248, 1090 GE Amsterdam The Netherlands, j.j.o.o.wiegerinck@uva.nl
Bibliografia
  • [1] S. Bell, E. Ligocka, A simplification and extension of Fefferman’s theorem on bi-holomorphic mappings, Invent. Math. 57 (1980), no. 3, 283-289.
  • [2] E. Bedford, B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1-40.
  • [3] Z. Błocki, The complex Monge-Ampere operator in hyperconvex domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 (1996), no. 4, 721-747.
  • [4] Z. Błocki, P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math.J. 151 (1998), 221-225.
  • [5] Z. Błocki, On the definition of the Monge-Ampere operator in C2, Math. Ann. 328 (2004)^0.3,415-423.
  • [61 Z, Błocki, The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2613-2625.
  • [7] K. Ciesielski, Professor Józef Siciak – a scholar and educator. Proceedings of Conference on Complex Analysis (Bielsko-Biala, 2001). Ann. Polon. Math. 80 (2003), 1-15.
  • [8] A. Edigarian, W. Zwonek, Geometry of the symmetrized polydisc, Arch. Math. (Basel) 84 (2005), no. 4, 364-374.
  • [9] A. Edigarian, On definitions of the pluricomplex Green function, Ann. Polon. Math. 67 (1997), no. 3, 233-246.
  • [10] A. Edigarian, W. Zwonek, Invariance of the pluricomplex Green function under proper mappings with applications, Complex Variables Theory Appl. 35 (1998), no. 4, 367-380.
  • [11] F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, nach Potenzen einer Veranderlichen fortschreiten, Math. Ann. 62 (1906), no. 1, 1-88.
  • [12] M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin 1993.
  • [13] M. Jarnicki, P. Pflug, Extension of holomorphic functions, De Gruyter Expositions in Mathematics, vol. 34, Walter de Gruyter & Co., Berlin 2000.
  • [14] M. Jarnicki, P. Pflug, Separately analytic functions, EMS Tracts in Mathematics, vol. 16, European Mathematical Society Publishing House, Zurich 2011.
  • [15] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), no. 2, 231-240.
  • [16] M. Klimek, Pluripotential theory, London Mathematical Society Monographs, New Series, vol. 6, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York 1991.
  • [17] S. Kołodziej, Capacities associated to the Siciak extremal function, Ann. Polon. Math. 49 (1980), no. 3, 279-290.
  • [18] S. Kołodziej, The complex Monge-Amperc equation, Acta Math. 180 (1998). no. 1, 69-117.
  • [19] S. Kołodziej, The complex Monge-Ampere equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005), no. 840.
  • [20] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C°° functions, J. Approx. Theory 61 (1990), no. 1, 106-117.
  • [21] M. Schiffer, Stefan Bergman (JS95-1977): in memoriam, Ann. Polon. Math. 39 (1981), 5-9.
  • [22] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
  • [23] J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of C, Ann. Polon. Math. 22 (1969/1970), 145-171.
  • [24] J. Siciak, Extremal plurisubharmonic functions in C , Ann. Polon. Math. 39 (1981), 175-211.
  • [25] J. Ryll, P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), no. 1, 107-116.
  • [26] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge 1991.
  • [27] W. Zwonek, On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math. (Basel) 72 (1999), no. 4, 304-314.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-54e0d6e0-ec88-4952-9805-0bfbe7e35cb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.