Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2017 | Vol. 65, no. 5 | 893--906
Tytuł artykułu

Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A constitutive model of rocks subjected to cyclic stress–temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress–strain curve for rock reloading after stress–temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress–temperature and only cyclic stress. Finally, the total damage evolution induced by stress–temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress–strain relationship during stress–temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress–strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
Wydawca

Czasopismo
Rocznik
Strony
893--906
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, People’s Republic of China
  • Institute of Structural Mechanics, Bauhaus-University Weimar, Weimar, Germany
autor
  • Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, People’s Republic of China, tjxiaccb@126.com
  • College of Civil Engineering, Shaoxing University, Shaoxing, People’s Republic of China
autor
  • Hunan Key Laboratory of Key Technology on Hydropower Development, Power China Zhongnan Engineering Corporation Limited, Changsha, People’s Republic of China
autor
  • Hunan Key Laboratory of Key Technology on Hydropower Development, Power China Zhongnan Engineering Corporation Limited, Changsha, People’s Republic of China
autor
  • Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, People’s Republic of China
Bibliografia
  • 1. Allen RD, Doherty TJ, Fossum AF (1982) Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns. Pacific Northwest Laboratory, Springfield
  • 2. Cao WG, Li X, Zhao H (2007) Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination. J Cent South Univ Technol 14:719–724. doi:10.1007/s11771-007-0137-6
  • 3. Deng J, Gu D (2011) On a statistical damage constitutive model for rock materials. Comput Geosci 37:122–128. doi:10.1016/j.cageo.2010.05.018
  • 4. Gunzburgera Y, Merrien-Soukatchoffa V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42:331–349. doi:10.1016/j.ijrmms.2004.11.003
  • 5. Inada Y, Kinoshita N, Ebisawa A, Gomi S (1997) Strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperatures. Int J Rock Mech Min Sci 34:3–4. doi:10.1016/S1365-1609(97)00048-8
  • 6. Kim HM, Rutqvist J, Ryu DW, Sunwoo C, Song WK (2012) Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance. Appl Energ 92:653–667. doi:10.1016/j.apenergy.2011.07.013
  • 7. Lemaitre J (1984) How to use damage mechanics. Nucl Eng Des 80:233–245. doi:10.1016/0029-5493(84)90169-9
  • 8. Li N, Chen W, Zhang P, Swoboda G (2001) The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading. Int J Rock Mech Min Sci 38:1071–1079. doi:10.1016/S1365-1609(01)00058-2
  • 9. Li X, Cao WG, Su YH (2012) A statistical damage constitutive model for softening behavior of rocks. Eng Geol 143–144:1–17. doi:10.1016/j.enggeo.2012.05.005
  • 10. Mahmutoglu Y (1998) Mechanical behavior of cyclically heated fine grained rock. Rock Mech Rock Eng 31:169–179. doi:10.1007/s006030050017
  • 11. Mo HH (1988) Investigation of cyclic loading tests and constitutive relation of rock. Chin J Rock Mech Eng 7:215–224 (in Chinese)
  • 12. Qiu SL, Feng XT, Xiao JQ, Zhang CQ (2014) An experimental study on the pre-peak unloading damage evolution of marble. Rock Mech Rock Eng 47:401–419. doi:10.1007/s00603-013-0394-7
  • 13. Saeb S, Amadei B (1992) Modelling rock joints under shear and normal loading. Int J Rock Mech Min Geomech Abstr 29:267–278. doi:10.1016/0148-9062(92)93660-C
  • 14. Song HP, Zhang H, Kang YL, Huang GY, Fu DH, Qu CY (2013) Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation. Tectonophysics 608:1343–1348. doi:10.1016/j.tecto.2013.06.007
  • 15. Souley M, Homand F, Amadei B (1995) An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths. Int J Rock Mech Min Sci Geomech Abstr 32:101–109. doi:10.1016/0148-9062(94)00039-6
  • 16. Wang ZL, Li YC, Wang JG (2007) A damage-softening statistical constitutive model considering rock residual strength. Comput Geosci 33:1–9. doi:10.1016/j.cageo.2006.02.011
  • 17. Wang ZC, Li SC, Qiao LP, Zhao JG (2013) Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mech Rock Eng 46:1603–1615. doi:10.1007/s00603-013-0387-6CrossRefGoogle Scholar
  • 18. Wang ZC, Li SC, Qiao LP, Zhang QS (2015) Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. Int J Rock Mech Min Sci 73:70–81. doi:10.1016/j.ijrmms.2014.09.018CrossRefGoogle Scholar
  • 19. White JA (2014) Anisotropic damage of rock joints during cyclic loading: constitutive framework and numerical integration. Int J Numer Anal Methods Geomech 38:1036–1057. doi:10.1002/nag.2247CrossRefGoogle Scholar
  • 20. Xia CC, Zhou SW, Zhang PY, Hu YS, Zhou Y (2015) Strength criterion for rocks subjected to cyclic stress and temperature variations. J Geophys Eng 47:753. doi:10.1088/1742-2132/12/5/753
  • 21. Xiao JQ, Ding DX, Xu G, Jiang FL (2009) Inverted S-shaped model for nonlinear fatigue damage of rock. Int J Rock Mech Min Sci 46:643–648. doi:10.1016/j.ijrmms.2008.11.002
  • 22. Xiao JQ, Ding DX, Jiang FL, Xu G (2010) Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci 47:461–468. doi:10.1016/j.ijrmms.2009.11.003
  • 23. Xiao JQ, Feng XT, Ding DX, Jiang FL (2011) Investigation and modeling on fatigue damage evolution of rock as a function of logarithmic cycle. Int J Numer Anal Methods Geomech 35:1127–1140. doi:10.1002/nag.946
  • 24. Xu XH, Ma SP, Xia MF, Ke FJ, Bai YL (2004) Damage evaluation and damage localization of rock. Theor Appl Fract Mech 42:131–138. doi:10.1016/j.tafmec.2004.08.002
  • 25. Zhang Y (2011) Experimental research on characteristic of deformation and dissipated energy of rock under cyclic loading conditions. Chongqing University, Chongqing (in Chinese)
  • 26. Zhang QS, Yang GS, Ren JX (2003) New study of damage variable and constitutive model of rock. Chin J Rock Mech Eng 22:30–34 (in Chinese)
  • 27. Zhou JW, Xu WY, Yang XG (2010) A microcrack damage model for brittle rocks under uniaxial compression. Mech Res Commun 37:399–405. doi:10.1016/j.mechrescom.2010.05.001
  • 28. Zhou SW, Xia CC, Du SG, Zhang PY, Zhou Y (2015a) An analytical solution for mechanical responses induced by temperature and air pressure in a lined rock cavern for underground compressed air energy storage. Rock Mech Rock Eng 48:749–770. doi:10.1007/s00603-014-0570-4
  • 29. Zhou SW, Xia CC, Hu YS, Zhou Y, Zhang PY (2015b) Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress. Int J Rock Mech Min 77:163–173. doi:10.1016/j.ijrmms.2015.03.038
  • 30. Zimmels Y, Kirzhner F, Krasovitski B (2002) Design criteria for compressed air storage in hard rock. Energ Environ 13:851–872
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-54c1a308-ddf5-416b-ace9-0d9ae1274cd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.