Warianty tytułu
Albumin drug carriers. Characteristics and application
Języki publikacji
Abstrakty
Aplikacja nanotechnologii w medycynie stwarza ogromny potencjał zarówno w leczeniu nowotworów, jaki i innych chorób. Albuminowe nośniki leków ze względu na małą cytotoksyczność, wysoką biokompatybilność oraz liczne dostępne metody produkcji są znakomitym tego przykładem. Przegląd dostarcza informacji z zakresu rodzajów stosowanych nanostruktur albuminowych, sposobów modyfikacji ich powierzchni oraz ogólnej wiedzy na temat albuminy. Główną uwagę zwrócono na zastosowanie różnych nanostruktur albuminowych w medycynie, w szczególności w nowoczesnych terapiach nowotworowych oraz obrazowaniu medycznym. Ponadto zostały podane przykłady różnych nanosytemów albuminowych opisanych w literaturze.
The application of nanotechnology in medicine creates great opportunities in the treatment of cancer as well as other diseases. Due to their low cytotoxicity, high biocompatibility and many available preparation methods, albumin drug carriers are an excellent example of that. This review provides information on the types of albumin nanostructures, the methods of surface modifications and general knowledge of albumin. The main attention has been paid to the application of albumin nanostructures in medicine, particularly in novel cancer treatments and medical imaging. Furthermore, examples of different albumin nanosystems described in literature reports have been provided.
Czasopismo
Rocznik
Tom
Strony
7--14
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
- Katedra Inzynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
autor
- Katedra Inzynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
autor
- Katedra Inzynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska, magdalena.glab@doktorant.pk.edu.pl
Bibliografia
- [1] Zakrzewski K.: Białka, w: Encyklopedia Fizyki Współczesnej. Wydawnictwo Naukowe PWN (1983).
- [2] Sethi A., Sher M., Akram M.R., Karim S., Khiljee S., Sajjad A., Shah S.N., Murtaza G.: Albumin as a drug delivery and diagno- stic tool and its market approved products. Acta Pol. Pharm. 70 (2013) 597–600.
- [3] Kłosowska K.: Rola albuminy w diagnostyce klinicznej. Badanie i Diagnoza 13 (2007) 17–21.
- [4] Elsadek B., Kratz F.: Impact of albumin on drug delivery – new applications on the horizon. J. Control. Release 157 (2012) 4–28.
- [5] Karimi M., Bahrami S., Ravari S.B., Zangabad P.S., Mirshekari H., Bozorgomid M., Shahreza S., Sori M., Hamblin M.R.: Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv. 13 (2016) 1609–1623.
- [6] Khandelia R., Bhandari S., Pan U.N., Ghosh S.S., Chattopadhyay A.: Gold nanocluster embedded albumin nanoparticles for two- -photon imaging of cancer cells accompanying drug delivery. Small 11 (2015) 4075–4081.
- [7] Protein Data Bank.
- [8] Zhu L., Yang F., Chen L., Meehan E.J., Huang M.: A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. Journal of Structural Biology 162 (1) (2008) 40–49.
- [9] Carter D.C., Ho J.X.: Structure of serum albumin. Advances in Protein Chemistry 45 (1994) 153–203.
- [10] Langer K., Balthasar S., Vogel V., Dinauer N., von Briesen H., Schubert D.: Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257 (2003) 169–180.
- [11] Elzoghby A.O., Samy W.M., Elgindy N.A.: Albumin-based nano particles as potential controlled release drug delivery systems. J. Control. Release 157 (2012) 168–182.
- [12] HougeirF.G.,KircikL.:Areviewofdeliverysystemsincosmetics. Dermatologic Therapy 25 (3) (2012) 234–237.
- [13] Almond B.A., Hadba A.R., Freeman S.T., Cuevas B.J., York A.M., Detrisac C.J., Goldberg E.P.: Efficacy of mitoxantrone-loaded albumin microspheres for intratumoral chemotherapy of breast cancer. J. Control Release 91 (1–2) (2003) 147–155.
- [14] Gayakwad S.G., Bejugam N.K., Akhavein N., Uddin N.A., Oettinger C.E., D'Souza M.J.: Formulation and in vitro characte- rization of spray-dried antisense oligonucleotide to NF-kappaB encapsulated albumin microspheres. J. Microencapsul. 26 (8) (2009) 692–700.
- [15] Sharma A., Sharma U.S.: Liposomes in drug delivery. Progress and limitations. Int. J. Pharm. 154 (1997) 123–140.
- [16] Torchilin V.P.: Recent advances with liposomes as pharmaceu- tical carriers. Nat. Rev. Drug Discov. 4 (2005) 145–160.
- [17] Yokoe J., Sakuragi S., Yamamoto K., Teragaki T., Ogawara K., Higaki K., Katayama N., Kai T., Sato M., Kimura T.: Albumin-con-jugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats. Int. J. Pharm. 353 (2008) 28–34.
- [18] Stride E., Edirisinghe M.: Novel microbubble preparation tech- nologies. Soft Matter 4 (12) (2008) 2350–2359.
- [19] Upadhyay A., Dalvi S.V.: Microbubble formulations. Synthesis, stability, modeling and biomedical applications. Ultrasound Med. Biol. 45 (2) (2019) 301–343.
- [20] Lindner J.R.: Microbubbles in medical imaging. Current applica- tions and future directions. Nat. Rev. Drug Discov. 3 (6) (2004) 527–32.
- [21] LiY.,ChenY.,DuM.,ChenZ.Y.:Ultrasoundtechnologyformole- cular imaging. From contrast agents to multimodal imaging. ACS Biomaterials Science & Engineering 4 (8) (2018) 2716–2728.
- [22] Karimi M., Avci P., Mobasseri R., Hamblin M.R., Naderi-Manesh H.: The novel albumin-chitosan core-shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation. J. Nanopart Res. 15 (4) (2013) 1651.
- [23] Niaz T., Ihsan A., Abbasi R., Shabbir S., Noor T., Imran M.: Chitosan-albumin based core shell-corona nano-antimicrobials to eradicate resistant gastric pathogen. Int. J. Biol. Macromol. 138 (2019) 1006–1018.
- [24] Yewale C., Baradia D., Vhora I., Misra A.: Proteins: emerging carrier for delivery of cancer therapeutics. Expert Opin. Drug Deliv. 10 (10) (2013) 1429–1448.
- [25] Singh H.D., Wang G., Uludağ H., Unsworth L.D.: Poly-L-lysine- -coated albumin nanoparticles. Stability, mechanism for incre- asing in vitro enzymatic resilience, and siRNA release charac- teristics. Acta Biomater. 6 (11) (2010) 4277–4284.
- [26] Wagner S., Rothweiler F., Anhorn M.G., Sauer D., Riemann I., Weiss E.C. et al.: Enhanced drug targeting by attachment of an anti αv integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials 31 (8) (2010) 2388–2398.
- [27] Banerjee S.S., Aher N., Patil R., Khandare J.: Poly (ethylene gly- col)-prodrug conjugates. Concept, design, and applications. Journal of Drug Delivery (2012).
- [28] Shen Z., Li Y., Kohama K., Oneill B., Bi J.: Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjuga- ted albumin nanospheres. Pharmacol. Res. 63 (1) (2011) 51–58.
- [29] Butzbach K., Rasse-Suriani F.A., Gonzalez M.M., Cabrerizo F.M., Epe B.: Albumin-folate conjugates for drug-targeting in photody- namic therapy. Photochem. Photobiol. 92 (4) (2016) 611–619.
- [30] Kratz F.: Albumin as a drug carrier. Design of prodrugs, drug conju-gates and nanoparticles. J. Control. Release 132 (2008) 171–183.
- [31] SzalaS.,JaroszM.:Nowotworowenaczyniakrwionośne.Postę- py Hig. Med. Dośw. 65 (2011) 437–446.
- [32] Duan X., Li Y.: Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9 (2013) 1521–1532.
- [33] Desai N., Trieu V., Damascelli B., Soon-Shiong P.: SPARC expres- sion correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl. Oncol. 2 (2009) 59–64.
- [34] Zhang B., Hu Y., Pang Z.: Modulating the tumor microenviron- ment to enhance tumor nanomedicine delivery. Front. Pharma- col. 8 (2017) 952.
- [35] Yamamoto Y., Kawano I., Iwase H.: Nab-paclitaxel for the treatment of breast cancer. Efficacy, safety and approval. Onco. Targets Ther. 4 (2011) 123–131.
- [36] Arpino G., Marmé F., Cortés J., Ricevuto E., Leonard R., Llombart-Cussac A.: Tailoring the dosing schedule of nab-paclitaxel in metastatic breast cancer according to patient and disease characteristics. Recommendations from a panel of experts. Crit. Rev. Oncol. Hematol. 99 (2016) 81–90.
- [37] Chen H., Huang S., Wang S., Zheng X., Lin J., Li P., Lin L.: Nab-paclitaxel (abraxane)-based chemotherapy to treat elderly patients with advanced nonsmall-cell lung cancer. A single centre, randomized and openlabel clinical trial. Chin. J. Cancer Res. 27 (2015) 190–196.
- [38] Wang Z., Li Z., Zhang D., Miao L., Huang G.: Development of etoposideloaded bovine serum albumin nanosuspensions for parenteral delivery. Drug Deliv. 22 (2015) 79–85.
- [39] Abu-Khalaf M.M., Baumgart M.A., Gettinger S.N., Doddamane I., Tuck D.P., Hou S., Chen N., Sullivan C., Lezon-Geyda K., Zelterman D., Hatzis C., Deshpande H., Digiovanna M.P., Azodi M., Schwartz P.E., Harris L.N.: Phase 1b study of the mam- malian target of rapamycin inhibitor sirolimus in combination with nanoparticle albumin-bound paclitaxel in patients with advanced solid tumors. Cancer 121 (2015) 1817–1826.
- [40] LoRusso P.M., Sarantopoulos J.: A phase 1 trial of ABI-011 in patients with advanced solid tumors or lymphomas. Clinical Trials (2019).
- [41] Kummitha C.M., Malamas A.S., Lu Z.R.: Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphi- phile/siRNA nanoparticles. Int. J. Nanomedicine 7 (2012) 5205– 5214.
- [42] Han J., Wang Q., Zhang Z., Gong T., Sun X.: Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small 10 (2014) 524- 535.
- [43] Choi J.H., Hwang H.J., Shin S.W., Choi J.W., Um S.H., Oh B.K.: A novel albumin nanocomplex containing both small interfe- ring RNA and gold nanorods for synergetic anticancer therapy. Nanoscale 7 (2015) 9229–9237.
- [44] Lu W., Sun Q., Wan J., She Z., Jiang X.G.: Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 66 (2006) 11878–11887.
- [45] Chanphai P., Kreplak L., Tajmir-Riahi H.A.: Al cation induces aggregation of serum proteins. J. Pharm. Biomed. Anal. 141 (2017) 234–240.
- [46] Luque-Michel E., Imbuluzqueta E., Sebastián V., Blanco-Prieto M.J.: Clinical advances of nanocarrier-based cancer therapy and diagnosis. Exp. Opin. Drug Deliv. 14 (2017) 75–92.
- [47] VanLeeuwenF.,BuckleT.,BrouwerO.,OlmosR.V.,vanderPoelH.: A hybrid multimodal imaging technology for surgical guidance to the sentinel lymph nodes of the prostate. Making the translation from mice to patients. J. Nucl. Med. 52 (2011) 531–539.
- [48] An F.F., Zhang X.H.: Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Teranostics 7 (2017) 3667–3689.
- [49] Kudarha R.R., Sawant K.K.: Albumin based versatile multifunctional nanocarriers for cancer therapy. Fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater. Sci. Eng. C Mater. Biol. Appl. 81 (2017) 607–626.
- [50] Chen Q., Liang C., Wang X., He J., Li Y., Liu Z.: An albumin-based theranostic nanoagent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post-surgery. Biomaterials 35 (2014) 9355–9362.
- [51] Zhang Y., He L., Wu J., Wang K., Wang J., Dai W., Yuan A., Wu J., Hu Y.: Switchable PDT for reducing skin photosensitization by a NIR dye inducing self-assembled and photo-disassembled nanoparticles. Biomaterials 107 (2016) 23–32.
- [52] Sheng Z., Hu D., Zheng M., Zhao P., Liu H., Gao D., Gong P., Gao G., Zhang P., Ma Y., Cai L.: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging guided cancer synergistic phototherapy. ACS Nano 8 (12) (2014) 12310–12322.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-54a779f3-87c0-4dda-b757-6b665367aba9