Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 49, nr 3 | 271--281
Tytuł artykułu

Interval decomposition lattices are balanced

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intervals in binary or n-ary relations or other discrete structures generalize the concept of an interval in a linearly ordered set. They are defined abstractly as closed sets of a closure system on a set, satisfying certain axioms. Join-irreducible partitions into intervals are characterized in the lattice of all interval decompositions. This result is used to show that the lattice of interval decompositions is balanced, and the case when this lattice is distributive is also characterised.
Wydawca

Rocznik
Strony
271--281
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
Bibliografia
  • [1] P. Crawley, R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall Inc., New Jersey, 1973.
  • [2] G. Czédli, Factor lattices by tolerances, Acta Sci. Math. (Szeged) 44 (1982), 35–42.
  • [3] W. Dörfler, Ueber die X-Summe von gerichteten Graphen, Arch. Math. 22 (1971), 24–36.
  • [4] W. Dörfler, W. Imrich, Ueber die X-Summe von Mengensystemen, In: “Combinatorial Theory and its Applications I.”, Colloq. Math. Soc. Janos Bolyai 10 (1973), Keszthely, Hungary, 1973, 261–383.
  • [5] S. Foldes, S. Radeleczki, On interval decomposition lattices, Discuss. Math. Gen. Algebra Appl. 24 (2004), 95–114.
  • [6] R. Fraïssé, Course of Mathematical Logic, Vol. I, Reidel, Dordrecht, 1973.
  • [7] R. Fraïssé, Present problems about intervals in relation theory and logic, p. 179–200, in: “Non-classical Logics, Model Theory and Computability”, North-Holland, Amsterdam, 1977.
  • [8] R. Fraïssé, Theory of Relations, Revised Edition, Elsevier, 2000.
  • [9] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967), 25–66.
  • [10] G. Grätzer, General Lattice Theory: Foundation, Birkhäuser/Springer, Basel, 2011.
  • [11] M. Habib, M. C. Maurer, On X-join decomposition for undirected graphs, Discrete Appl. Math. 1 (1979), 201–207.
  • [12] F. Hausdorff,Grundzüge der Mengenlehre, Leipzig, 1914.
  • [13] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1918), 435–505.
  • [14] E. K. Horváth, S. Radeleczki, Notes on CD-independent subsets, Acta Sci. Math. (Szeged) 78 (2012), 3–24.
  • [15] R. M. McConnell, J. P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999), 189–241.
  • [16] R. H. Möhring, Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions, Ann. Oper. Res. 4 (1985/6), 195–225.
  • [17] R. H. Möhring, F. J. Radermacher, Substitution decomposition of discrete structures and connections to combinatorial optimization, Ann. Discrete Math. 19 (1984), 257–355.
  • [18] S. Radeleczki, Maeda-type decomposition of CJ-generated algebraic lattices, Southeast Asian Bull. Math. 25 (2001), 503–513.
  • [19] K. Reuter, The Kurosh-Ore exchange property, Acta Math. Hungar. 53 (1989), 119–127.
  • [20] G. Sabidussi, Graph derivatives, Math. Z. 76 (1961), 385–401.
  • [21] M. Stern, Semimodular Lattices, Theory and Applications, Cambridge University Press, 1999.
  • [22] A. Walendziak, Strongness in lattices, Demonstratio Math. 27 (1994), 569–572.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5485e34f-eaff-4a4a-9753-b2a9480014cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.