Czasopismo
2014
|
Vol. 49, No. 2
|
63--80
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Different gravitational force models are used for determining the satellites’ orbits. The satellite gravity gradiometry (SGG) data contain this gravitational information and the satellite accelerations can be determined from them. In this study, we present that amongst the elements of the gravitational tensor in the local north-oriented frame, all of the elements are suitable for this purpose except Txy. Three integral formulae with the same kernel function are presented for recovering the accelerations from the SGG data. The kernel of these integrals is well-behaving which means that the contribution of the far-zone data is not very significant to their integration results; but this contribution is also dependent on the type of the data being integrated. Our numerical studies show that the standard deviations of the differences between the accelerations recovered from Tzz, Txz and Tyz and those computed by an existing Earth´s gravity model reduce by increasing the cap size of integration. However, their root mean squared errors increase for recovering Ty from Tyz. Larger cap sizes than 5 on is recommended for recovering Tx and Tz but smaller ones for Ty.
Rocznik
Tom
Strony
63--80
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
- Department of Engineering Science, University West, Trollhättan, Sweden, mehdi.eshagh@hv.se
Bibliografia
- Bobojć A. and Drożyner A. (2003) Satellite orbit determination using satellite gravity gradiometry observations in GOCE mission perspective, Advances in Geosciences, 1, 109-112.
- Bouman J. and Koop R. (2003) Error assessment of GOCE SGG data using along track interpolation, Advances in Geosciences, 1, 27-32.
- Bouman J., Koop R., Haagmans R., Mueller J., Sneeuw N. Tscherning C.C., and Visser P. (2003) Calibration and validation of GOCE gravity gradients, Paper presented at IUGG meeting, pp. 1-6.
- Bouman J., Koop R., Tscherning C. C. and Visser P. (2004) Calibration of GOCE SGG data using high-low STT, terrestrial gravity data and global gravity field models, Journal of Geodesy, 78, 124-137.
- Bouman J., Fiorot S., Fuchs M., Gruber T., Schrama E., Tscherning C., Veicherts M., Visser P. (2011) GOCE gravitational gradients along the orbit, Journal of Geodesy, 85, 791-805.
- de Min E. (1994) On the numerical evaluation of Stokes’s integral, International Geoid Service Bulletin, 3, 41-46.
- ESA (1999) Gravity Field and Steady-State Ocean Circulation Mission, ESA SP-1233(1), Report for mission selection of the four candidate earth explorer missions. ESA Publications Division, pp. 217, July 1999.
- Eshagh M. (2003) Precise orbit determination of a low Earth orbiting satellite, MSc thesis, K. N. Toosi University of Technology, Tehran, Iran.
- Eshagh M. (2005) Step-variable numerical orbit integration of a low Earth orbiting satellite, Journal of the Earth & Space Physics, 31, 1, 1-12.
- Eshagh M. (2008) Non-singular expression for the vector and gradient tensor of gravitation in a geocentric spherical frame, Computers & Geosciences, 34, 1762-1768.
- Eshagh M. (2009a) Orbit integration in non-inertial frames, Journal of the Earth & Space Physics, 35, 1, 1-8.
- Eshagh M. (2009b) Alternative expressions for gravity gradients in local-north oriented frame and tensor spherical harmonics, Acta Geophysica, 58, 215-243.
- Eshagh M. (2010a) Least-squares modification of extended Stokes’ formula and its secondorder radial derivative for validation of satellite gravity gradiometry data, Journal of Geodynamics, 49, 92-104.
- Eshagh M. (2010b) Towards validation of satellite gradiometric data using modified version of 2nd order partial derivatives of extended Stokes’ formula, Artificial Satellites, 44, 4, 103-129.
- Eshagh M. (2011a) Semi-stochastic modification of second-order radial derivative of AbelPoisson's formula for validating satellite gravity gradiometry data, Advances in Space Research, 47, 2, 757-767.
- Eshagh M. (2011b) The effect of spatial truncation error on integral inversion of satellite gravity gradiometry data, Advances in Space Research, 47, 1238-1247.
- Eshagh M. and Abdollahzadeh M. (2010) Semi-vectorization: an efficient technique for synthesis and analysis of gravity gradiometry data, Earth Science Informatics, 3,149-158.
- Eshagh M. and Abdollahzadeh M. (2011) Software for generating gravity gradients using a geopotential model based on irregular semi-vectorization algorithm, Computers & Geosciences, 32, 152-160.
- Eshagh M. and Najafi-Alamdari M. (2006) Comparison of different numerical integration methods of orbit integration, Journal of the Earth & Space Physics, 33, 1, 41-57. (in Persian).
- Eshagh M. and Najafi-Alamdari M. (2007) Perturbations in orbital elements of a low Earth orbiting satellite, Journal of the Earth & Space Physics, 33, 1, 1-12.
- Eshagh M. and Romeshkani M., (2011). Generation of vertical-horizontal and horizontalhorizontal gravity gradients using stochastically modified integral estimators, Advances in Space Research, 48, 1341-1358.
- Eshagh M. and Romeshkani M., (2013). Quality assessment for terrestrial gravity anomalies by variance component estimation using GOCE gradiometric data and Earth’s gravity models. Studia Geophysica et Geodaetica, 57, 67-83.
- Eshagh M., Abdollahzadeh M., and Alamdari-Najafi M. (2009) Simplification of geopotential perturbing force acting on a satellite, Artificial Satellites, 43, 2, 45-64.
- Haagmans R. Prijatna K. and Omang O. (2002) An alternative concept for validation of GOCE gradiometry results based on regional gravity, In Proc. Gravity and Geoid 2002, GG2002, August 26-30, Thessaloniki, Greece.
- Heiskanen W. and Moritz H. (1967) Physical Geodesy. W.H Freeman and company, San Francisco and London.
- Hirt C., Featherstone W.E. and Claessens S. J. (2011) On the accurate numerical evaluation of gedetic convolution integrals, Journal of Geodesy, 85, 519-538.
- Hwang C. and Lin J.M. (1998) Fast integration of low orbiter’s trajectory perturbed by the earth’s non-sphericity, Journal of Geodesy, 72, 578-585.
- IERS Conventions (2010). Gérard Petit and Brian Luzum (eds.). (IERS Technical Note ; 36) Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010. 179 pp., ISBN 3-89888-989-6.
- Kaula W. (1966) Theory of satellite geodesy, Blaisdell, Waltheim.
- Keller W. and Sharifi M. A. (2005) Satellite gradiometry using a satellite pair, Journal of Geodesy, , 78, 544-557.
- Kern M. and Haagmans R. (2004) Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric GOCE data, In Proc. Gravity, Geoid and Space missions, GGSM 2004, IAG International symposium, Portugal, August 30-September 3, pp. 95-100.
- Kern M., Preimesberger T., Allesch M., Pail. R., Bouman J. and Koop R. (2005) Outlier detection algorithms and their performance in GOCE gravity field processing, Journal of Geodesy, 78, 509-519.
- Martinec Z. (1998) Boundary-Value Problems for Gravimetric Determination of a Precise Geoid, Springer Verlag, 240 p.
- Martinec Z. (2003) Green’s function solution to spherical gradiometric boundary-value problems, Journal of Geodesy, 77, 41-49.
- Moritz H. (1980) Geodetic Reference System 1980, Bulletin Géodésique, 54:3.
- Moritz, H. (2000) Geodetic Reference System 1980, Journal of Geodesy, 74, 1, 128-162.
- Mueller J., Denker H., Jarecki F. and Wolf K.I. (2004) Computation of calibration gradients and methods for in-orbit validation of gradiometric GOCE data, In Proc. Second international GOCE user workshop “Goce, The Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy, 8-10 March 2004.
- Novak P., Vanicek P., Veronneau M., Holmes SA. Featherstone WE. (2001) On the accuracy of modified Stokes’s integration in high-frequency gravimetric geoid determination, Journal of Geodesy, 74, 9, 644-654.
- Parrot D. (1989) Short arc orbit improvement for GPS satellites, MSc thesis, Department of Surveying Engineering, University of New Brunswick, Canada.
- Pail R. (2003) Local gravity field continuation for the purpose of in-orbit calibration of GOCE SGG observations, Advances in Geosciences, 1, 11-18.
- Pavlis N., Holmes SA., Kenyon SC. and Factor JK. (2008) An Earth Gravitational model to degree 2160: EGM08. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18, 2008.
- Petrovskaya P. and Vershkov A.N. (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital frames. Journal of Geodesy, 80, 117-127.
- Reed GB. (1973) Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometer, The Ohio State University, Dept. of Geod. Sciences, Rep. No. 201, Columbus, Ohio.
- Reigber C., Schwintzer P. and Lühr H. (1999) The CHAMP geopotential mission, Boll. Geof. Teor. Appl. 40, 285-289.
- Reigber Ch., Jochmann H., Wünsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer K.-H., König R., Förste Ch., Balmino G., Biancale R., Lemoine J.-M., Loyer S. and Perosanz F. (2004) Earth Gravity Field and Seasonal Variability from CHAMP. In: Reigber, Ch., Lühr, H., Schwintzer, P., Wickert, J. (eds.), Earth Observation with CHAMP - Results from Three Years in Orbit, Springer, Berlin, 25-30.
- Rim H. J. and Schutz B. E. (2001) Precision orbit determination (POD), Geoscience laser and altimeter satellite system, University of Texas, United States of America.
- Romeshkani M., (2011). Validation of GOCE Gravity Gradiometry Data Using Terrestrial Gravity Data. M.Sc. Thesis, K.N.Toosi University of Technology, Tehran, Iran.
- Rummel R., Sanso F., Gelderen M., Koop R., Schrama E., Brovelli M., Migiliaccio F., and Sacerdote F. (1993) Spherical harmonic analysis of satellite gradiometry. Publications in Geodesy, New Series, No. 39 Netherlands Geodetic Commission, Delft.
- Santos M. C. (1994) On real time orbit improvement for GPS satellites, Ph.D thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada.
- Schwartz K-P., Sideris M.G. and Forsberg R. (1990) The use of FFT techniques in Physical Geodesy, Geophysical Journal International, 100, 3, 485-514.
- Sharifi M.A. (2006) Satellite to satellite tracking in the space-wise approach, PhD dissertation, Geodätisches Institut der Universität Stuttgart.
- Sneeuw N. (1992) Representation coefficients and their use in satellite geodesy, Manuscripta Geodaetica, 17, 117-123.
- Somodi B. and Földvary L. (2011) Application of numerical integration techniques for orbit determination of state-of-the-art LEO satellites, Per. Pol. Civil Eng., 55, 2, 99-106, 2011.
- Su H. (2000) Orbit determination of IGSO, GEO and MEO satellites, Ph.D thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany.
- Tapley B., Ries J. Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pastor R., Pekker T., Poole S. and Wang F. (2005) GGM02-An improved Earth gravity field model from GRACE. Journal of Geodesy, 79, 467-478.
- Toth G., Földvary L., Tziavos I. and Adam J. (2004) Upward/downward continuation of gravity gradients for precise geoid determination, Proc. Second International GOCE user workshop “GOCE, The Geoid and Oceanography”, ESA-ESRIN, Frascati, Italy, 8-10 March 2004.
- Toth G. and Földvary L. (2005) Effect of geopotential model errors in the projection of GOCE gradiometer observables, In: Gavity, Geoid and Space missions, IAG symposia, 129. (Eds. Jekeli C., Bastos J. and Fernandes L.), Spriner verlag, Berlin Heidelberg, p. 72-76.
- Tscherning C. C., Veicherts M. and Arabelos D. (2006) Calibration of GOCE gravity gradient data using smooth ground gravity, In Proc. GOCINA workshop, Cahiers de center European de Geodynamique et de seismilogie, 25, 63-67, Luxenburg.
- Vermeer M. (1990) Observable quantities in satellite gradiometry, Bulletin Geodaesique, 64, 347-361.
- Visser P. (1992) The use of satellites in gravity field determination and adjustment, PhD dissertation, University of Delft.
- Visser P. (2009) GOCE gradiometer: estimation of biases and scale factors of all six individual accelerometers by precise orbit determination, Journal of Geodesy, 83, 1, 69-85.
- Wolf R. (2000) Satellite orbit and ephemeris determination using inter satellite links, Ph.D thesis, Department of Geodesy, University of Bundeswehr, Munchen, Germany.
- Wolf K. I. (2007) Kombination globaler potentialmodelle mit terresrischen schweredaten fur die berechnung der zweiten ableitungen des gravitationspotentials in satellitenbahnhohe, PhD thesis, University of Hannover, Germany.
- Zielinski J.B. and Petrovskaya M.S. (2003) The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer, Advances in Geosciences, 1, 149-153.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-547047e7-8d5d-4e8f-ad53-2cf0671f756a