Warianty tytułu
Języki publikacji
Abstrakty
The laser alloying is a continually developing surface treatment because of its significant and specific structuration of a surface. In particular, it is applied for Ti alloys, being now the most essential biomaterials` group for load-bearing implants. The present research was performed on the Ti13Nb13Zr alloy subject to laser modification in order to determine the treatment effects on surface topography and its some mechanical properties like nanohardness, Young's modulus, roughness. A pulse laser Nd:YAG was applied at three different laser pulse regimes: either 700 W, 1000 W or 1000 W treatment followed by 700 W modification at a pulse duration of 1 ms. The surface topography and morphology were examined using light microscopy and scanning electron microscopy with spectroscope of X-ray energy dispersion. The mechanical properties were determined by nanoindentation tests and surface roughness with a use of profilograph. The wettability was tested with a goniometer. The obtained results demonstrate complex behavior of the material surface: decrease in penetration distance and increase in hardness after first laser treatment, maintenance of this trend when machining using a higher laser pulse power, followed by an increase in penetration and decrease in hardness after additional laser treatment at lower power input, due to which a surface with fewer defects is obtained. The change in Young`s modulus follows the change in other mechanical properties, but not a change in roughness. Therefore, the observed hardening with the increase of the laser pulse power and then a small softening with the use of additional treatment with lower power can be attributed to some processes of remelting, diffusion and crystallization, sensitive to the previous surface state and heat energy flux. Despite that, the laser treatment always caused a significant hardening of the surface layer.
Czasopismo
Rocznik
Strony
44--56
Opis fizyczny
Bibliogr. 37 poz., wykr., tab., rys.
Twórcy
autor
- Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
autor
- Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland, beata.majkowska@pg.edu.pl
autor
- Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, 11/12 Narutowicza, 80-233 Gdańsk, Poland
Bibliografia
- 1. Suchanek K., Bartkowiak A., Gdowik A., Perzanowski M., Kąc S., Szaraniec B., Suchanek M., Marszałek M.: Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Materials Science and Engineering C 51 (2015) 57-63.
- 2. Park J.B., Kim Y.K.: Metallic biomaterials. [In] Biomaterials: Principles and Applications, Park J.B. [ed.], CRC Press, Boca Raton, (2003) 1-21.
- 3. Oldani C., Dominguez A.: Titanium as a biomaterial for implants. Recent Advances in Arthroplasty (2012) 149-162.
- 4. El-Rahman S.S.A.: Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research 47 3 (2003) 189-194.
- 5. Bartmański M., Berk A., Wójcik A.: The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Nb13Zr Alloy by Electrophoretic Technique. Advances in Materials Science 16 3 (2016) 56-66
- 6. Jin M., Yao S., Wang L.-N., Qiao Y., Volinsky A.A.: Enhanced bond strength and bioactivity of interconnected 3D TiO2 nanoporous layer on titanium implants. Surface & Coatings Technology 304 (2016) 459-467.
- 7. İzmir M., Ercan B.: Anodization of titanium alloys for orthopedic applications. Frontiers of Chemical Science and Engineering (2019), 1-18.
- 8. Vlcak P., Fojt J., Weiss Z., Kopeček J., Perina V.: The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surface & Coatings Technology 358 (2019) 144-152.
- 9. Kashkarov E.B., Nikitenkov N.N., Sutygina A.N., Syrtanov M.S., Vilkhivskaya O.V., Pryamushko T.S., Kudiiarov V.N., Volesky L.: Effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy. Surface & Coatings Technology 308 (2016) 2-9.
- 10. Simka W. Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L.: Electrochemical polishing of Ti–13Nb–13Zr alloy. Surface & Coatings Technology 213 (2012) 239–246.
- 11. Vasylyev M.A., Chenakin S.P., Yatsenko L.F.: Nitridation of TiA6AlA4V alloy under ultrasonic impact treatment in liquid nitrogen. Acta Materialia 60 (2012), 6223–6233.
- 12. Dumas V., Guignandon A., Vico L., Mauclair C., Zapata X., Linossier M.T., Bouleftour W., Granier J., Peyroche S., Dumas J.-C., Zahouani H., Rattner A.: Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomedical Materials 10 (2015), 55002.
- 13. Mitura S.: Novel Synthesis nanocrystalline Diamond Films. Innovative Processing of Films and Nanocrystalline Powders. IC Press (2002), 107-146.
- 14. Drevet R., Ben Jaber N., Fauréa J., Taraa A., Ben Cheikh Larbib A., Benhayounea H.: Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V sustrates. Surface & Coatings Technology 301 (2016), 94-99.
- 15. Bartmański M, Cieslik B., Glodowska J., Kalka P., Pawlowski L., Piepera M., Zielinski A.: Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceramics International 43 15 (2017), 11820-11829.
- 16. Łatka L., Pawłowski L., Chicot D., Pierlot C., Petit F.: Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surface and Coatings Technology, 205 (2010), 954-960.
- 17. Jazdzewska M., Majkowska-Marzec B.: Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Advances in Materials Science 17(4) (2017), 5-13.
- 18. Landowski M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Materials Science 19 (1) (2019), 21-31.
- 19. Kusinski J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., Major L., Marczak J., Lisiecki A.: Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences Technical Sciences. Technical Sciences 60 4 (2012) 711-728.
- 20. Adesina O., Popoola P., Fatoba O.: Laser Surface Modification — A Focus on the Wear Degradation of Titanium Alloy. [In] Fiber Laser, Paul M. [ed.], Intech Open, 2016, 367-381.
- 21. Diao Y., Zhang K.: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. Applied Surface Science 352 (2015) 163-168.
- 22. Milovanović D. S., Petrović S. M., Shulepov M. A., Tarasenko V. F., Radak B. B., Miljanić Š. S., Trtica M. S.: Titanium alloy surface modification by excimer laser irradiation. Optics & Laser Technology 54 (2013), 419-427.
- 23. Ashan M.S., Lee M.S.: Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses. Optik - International Journal for Light and Electron Optics 126 (2012), 5979-5983.
- 24. Kiran Kumar K., Samuel G.L., Shunmugam M.S.: Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. Journal of Materials Processing Technology 263 (2019), 266–275.
- 25. Mohazzab B.F., Jaleh B., Kakuee O., Fattah-alhosseini A.: Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Applied Surface Science 478 (2019), 623-635.
- 26. Kuczyńska-Zemła D., Kwaśniak P., Sotniczuk A., Spychalski M., Wieciński P., Zdunek J., Ostrowski R., Garbacz H.: Microstructure and mechanical properties of titanium subjected to direct laser interference lithography. Surface and Coatings Technology 364 (2019), 422-429.
- 27. Sun D., Gu D., Lin K., Ma J., Chen W., Huang J., Sun X., Chu M.: Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technology 342 (2019), 371-379.
- 28. Sun J., Zhu X., Qiu L., Wang F., Yang Y., Guo L.: The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Materials Today Communications 19 (2019), 277-285.
- 29. Fan Z., Feng H.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results in Physics 10 (2018), 660-664.
- 30. Tong Y., Yang N., Han K., Yuan S., Zhou J., Chen X., Shi L., Li W., Xudong R.: Surface morphology of titanium alloy with monolayer microparticles under different single pulse laser Energy. Optik 174 (2018), 766-775.
- 31. Pou P., Riveiro A., del Val J., Comesaña R., Penide J., Arias-González F., Soto R., Lusquiños F., Pou J.: Laser surface texturing of Titanium for bioengineering applications. Procedia Manufacturing 13 (2017), 694-701.
- 32. Gursel A.: Crack risk in Nd: YAG laser welding of Ti-6Al-4V alloy. Materials Letters 197 (2017), 233-235.
- 33. Zhou L., Yuan T., Li R., Tang J., Wang G., Guo K., Yuan J.: Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology 342 (2019), 11-23.
- 34. Łatka L., Cattini A., Chicot D., Pawłowski L., Kozerski S., Petit F., Denoirjean A.: Mechanical properties of yttria- and ceria-stabilized zirconia coatings obtained by suspension plasma spraying. Journal of Thermal Spray Technology 22 (2013), 125-130.
- 35. Pharr G. M., Oliver W. C.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19 1 (2004), 3-20.
- 36. Rogala-Wielgus D., Majkowska-Marzec B., Bartmański M.: Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne. Przegląd Spawalnictwa 90 7 (2018), 18-23.
- 37. Heise S., Höhlinger M., Torres Y., José J., Palacio P., Antonio J., Ortiz R., Wagener V., Virtanen S., Boccaccini A.R.: Electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta 232 (2017), 456–464.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5450aeea-db75-4579-a751-e7835f559871