Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 3 | 280--295
Tytuł artykułu

Laboratory Tests of Rolling Resistance of Different Tread Profiles for the Wheel of Martian Roverr

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to design and build a research stand that can be used to compare different types of tire tread profiles of the Mars rover (made using 3D printing) and to select the one that meets the criterion of the lowest power consumption of the drive motor, which corresponds to the minimum rolling resistance in paved area. As part of the task, a research stand was designed and built, consisting of two drive units of the tested drive system: one as a driving unit, the other as a driven unit, generating resistance when rolling one tire after another. During the tests, the following parameters were measured: the amplitude of the supply current, the rotational speed, information about which was obtained from the motor controller and the encoder located in the BLDC motor, and their variability over time. Additionally, the amplitude of the force pressing the wheel against the supporting surface, which generated tire deflection, was also measured. A relationship was demonstrated between the type of tire tread used, the force pressing the tires against the supporting surface and the rolling resistance forces of the Mars rover tires. The tire with the lowest rolling resistance under given operating conditions was selected.
Wydawca

Rocznik
Strony
280--295
Opis fizyczny
Bibliogr. 16 poz., fig., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering Street: Ludwika Narbutta 84 Postal code: 02-524 Warsaw, michal.gorzym@pw.edu.pl
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering Street: Ludwika Narbutta 84 Postal code: 02-524 Warsaw, damian.markuszewski@pw.edu.pl
Bibliografia
  • 1. Podembski K. Suspension – internal materials of KN Bekker Team, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology. 2020; 3–8.
  • 2. Brol S., Warczek J. Utilization of magnetic signature of automotive tire for exploitational wear assessment. Diagnostyka. 2022; 23(4), 1–3. https://doi. org/10.29354/diag/156255
  • 3. Jaworski J. Tires for motor vehicles. Construction and operation. Wydawnictwo Komunikacji i Łączności. 1987; 47–49, 85–91. [In Polish].
  • 4. Wang J., Yang B., Xiang L., Gao L., Lu Y., Wang R. Research of TPU materials for 3D printing aiming at non-pneumatic tires by FDM method. Polymers. 2020; 12(11), 1–19. https://doi.org/10.3390/ polym12112492
  • 5. Bartelmus W., Zimroz R. Planetary diagnostics method. Scientific Works of the Mining Institute of Wroclaw University of Science and Technology. 2017; 118 (33), 4–5. [In Polish].
  • 6. Glinka T., Szymaniec S. Operation and diagnostics of electrical machines and transformers. Diagnostics of machines and devices – general comments. Napędy i Sterowanie. 2020; 22(5), 36–49. [In Polish].
  • 7. Skóra M., Kowalski Cz. Analysis of vibrations in the drive with a PM BLDC motor caused by controller damage. Przegląd Elektrotechniczny. 2017; 93, 126–129. [In Polish]. https://doi. org/10.15199/48.2017.02.29
  • 8. Definition of Brushless BLDC motor – principle of operation, application, advantages. Available at: https://www.ebmia.pl/wiedza/porady/automatyka- porady/silnik-bezszczotkowy-bldc-co-to-jest-jak- dziala-zastosowanie/ [Accessed: 16.12.2023]
  • 9. Batko W., Dąbrowski Z. Modern methods of testing vibroacoustic processes (technical applications) part II, ITE – PIB 2006 [In Polish].
  • 10. Ahnesjö H. Fault detection of planetary gearboxes in BLDC-motors using vibration and acoustic noise analysis. Uppsala Universitet, UPTEC E 20026 2020, 1–5, 7–9.
  • 11. Lihong J., Junpeng S., Xigui W., Yongmei W., Baixue F. Vibroacoustic characteristics analysis of a planetary gear reducer considering the exterior housing structure. Mechanical Sciences. 2021; 12, 539–557.
  • 12. Spectral analysis of random signals – definitions and applications. Available at: http://atol.am.gdynia.pl/tc/cps2007/analiza.html [Accessed 20.01.2024]
  • 13. Konieczny Ł., Burdzik R., Warczek J., Wilk A. Proposal of using phase angle as a complement to vibration methods in the diagnosing of cars suspension systems. Przegląd Mechaniczny. 2016; 10, 37–41, https://doi.org/10.15199/148.2016.10.5
  • 14. Andrzejewski R. Dynamics of the pneumatic road wheel. WNT Warszawa 2010, 36–37, 129– 139. [In Polish].
  • 15. Goyal D., Pabla B. The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Archives of Computational Methods in Engineering. 2016; 23, 585–594. https://doi.org/10.1007/s11831-015-9145-0
  • 16. Miao Q., Zhou Q. Planetary gearbox vibration signal characteristics analysis and fault diagnosis. Shock and Vibration. 2015; 126489, 3–8. http:// dx.doi.org/10.1155/2015/126489
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-5442a0bf-8195-433c-9f8b-afafbe169ad7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.